RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      High-performance electrochromic films with fast switching times using transparent/conductive nanoparticle-modulated charge transfer

      한글로보기

      https://www.riss.kr/link?id=A107462602

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>One of the most critical issues in electrochromic (EC) films based on transition metal oxides such as tungsten oxides (WOx) is their poor charge transfer property, which is closely related to EC performance. Herein, high-performance EC films with enhanced charge transport are prepared using small-molecule linkers and transparent/conductive nanoparticles (NPs). In this work, oleylamine (OAm)-stabilized WO2.72 nanorods (NRs) and OAm-stabilized indium tin oxide (ITO) NPs are layer-by-layer (LbL)-assembled with small-molecule linkers (tris(2-aminoethyl)amine, TREN) using a ligand-exchange reaction between bulky/insulating OAm ligands and TREN molecules. In this case, there is only one TREN layer between neighboring inorganic components (WO2.72 NRs and/or ITO NPs), resulting in a dramatic decrease in the separation distance. This minimized separation distance as well as the periodic insertion of transparent/conductive ITO NPs can significantly reduce the charge transfer resistance within WO2.72 NR-based EC films, which remarkably improves their EC performance. Compared to EC films without ITO NPs, the formed EC films with ITO NPs exhibit faster switching responses (4.1 times in coloration time and 3.5 times in bleaching time) and a maximum optical modulation of approximately 55.8%. These results suggest that electrochemical performance, including EC performance, can be significantly improved through structural/interfacial designing of nanocomposites.</P>
      번역하기

      <P>One of the most critical issues in electrochromic (EC) films based on transition metal oxides such as tungsten oxides (WOx) is their poor charge transfer property, which is closely related to EC performance. Herein, high-performance EC films ...

      <P>One of the most critical issues in electrochromic (EC) films based on transition metal oxides such as tungsten oxides (WOx) is their poor charge transfer property, which is closely related to EC performance. Herein, high-performance EC films with enhanced charge transport are prepared using small-molecule linkers and transparent/conductive nanoparticles (NPs). In this work, oleylamine (OAm)-stabilized WO2.72 nanorods (NRs) and OAm-stabilized indium tin oxide (ITO) NPs are layer-by-layer (LbL)-assembled with small-molecule linkers (tris(2-aminoethyl)amine, TREN) using a ligand-exchange reaction between bulky/insulating OAm ligands and TREN molecules. In this case, there is only one TREN layer between neighboring inorganic components (WO2.72 NRs and/or ITO NPs), resulting in a dramatic decrease in the separation distance. This minimized separation distance as well as the periodic insertion of transparent/conductive ITO NPs can significantly reduce the charge transfer resistance within WO2.72 NR-based EC films, which remarkably improves their EC performance. Compared to EC films without ITO NPs, the formed EC films with ITO NPs exhibit faster switching responses (4.1 times in coloration time and 3.5 times in bleaching time) and a maximum optical modulation of approximately 55.8%. These results suggest that electrochemical performance, including EC performance, can be significantly improved through structural/interfacial designing of nanocomposites.</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼