1 김정훈, "몬테칼로 기법을 이용한 방사선 선량증가 물질에 따른 선량증가 효과 평가" 대한방사선과학회 40 (40): 93-99, 2017
2 최은애, "photon빔 조사 후 AuNPs 입자의 방사선 감수성 향상에 관한 생물물리학적 평가" 한국방사선학회 10 (10): 483-487, 2016
3 M. Faiz Khan, "The physics of radiation therapy" Wolters Kluwer Lippincott Williams & Wilkins 524-553, 2015
4 NIST, "Stopping-Power & Range Tables for Electrons, Protons, and Helium Ions" 2017
5 H. P. Kok, "Quantifying the combined effect of radiation therapy and hyperthermia in terms of equivalent dose distributions" 88 (88): 739-745, 2014
6 E. Brun, "Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution" 72 (72): 128-134, 2009
7 P. Retif, "Nanoparticle for radiation therapy enhancement : the key parameters" 5 (5): 1030-1045, 2015
8 J. C. Chow, "Monte carlo simulation on a gold nanoparticle irradiated by electron beams" 57 (57): 3323-3331, 2012
9 G. Daniel, "Monte Carlo study of Radiation Dose Enhancement by Gadolinium in Megavoltage and High Dose Rate Radiotherapy" 9 (9): e109389-, 2014
10 R. Ahmad, "Investigation into the effects of high-Z nano materials in proton therapy" 61 (61): 4537-4550, 2016
1 김정훈, "몬테칼로 기법을 이용한 방사선 선량증가 물질에 따른 선량증가 효과 평가" 대한방사선과학회 40 (40): 93-99, 2017
2 최은애, "photon빔 조사 후 AuNPs 입자의 방사선 감수성 향상에 관한 생물물리학적 평가" 한국방사선학회 10 (10): 483-487, 2016
3 M. Faiz Khan, "The physics of radiation therapy" Wolters Kluwer Lippincott Williams & Wilkins 524-553, 2015
4 NIST, "Stopping-Power & Range Tables for Electrons, Protons, and Helium Ions" 2017
5 H. P. Kok, "Quantifying the combined effect of radiation therapy and hyperthermia in terms of equivalent dose distributions" 88 (88): 739-745, 2014
6 E. Brun, "Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution" 72 (72): 128-134, 2009
7 P. Retif, "Nanoparticle for radiation therapy enhancement : the key parameters" 5 (5): 1030-1045, 2015
8 J. C. Chow, "Monte carlo simulation on a gold nanoparticle irradiated by electron beams" 57 (57): 3323-3331, 2012
9 G. Daniel, "Monte Carlo study of Radiation Dose Enhancement by Gadolinium in Megavoltage and High Dose Rate Radiotherapy" 9 (9): e109389-, 2014
10 R. Ahmad, "Investigation into the effects of high-Z nano materials in proton therapy" 61 (61): 4537-4550, 2016
11 R. Berbeco, "In vitro dose enhancement from gold nanoparticles under different clinical MV photon beam configurations" 39 (39): 3900-3901, 2012
12 R. David, Lide, "Handbook of Chemistry and Physics" CRC Press 2003
13 P. Stavrev, "Generalization of a model of tissue response to radiation based on the ideas of functional subunits and binomia statistics" 46 (46): 1501-1518, 2011
14 K. SoRa, "Feasibility study on the use of gold nanoparticles as a dose enhancement agent for a superficial X-ray therapy applied to melanoma" Seoul national university gradudate school 2014
15 L. Sim, "Enhancement of biological effectiveness of radiotherapy treatments of protstate cancer cells in vitro using gold nanoparticles" 2011
16 D. Regulla, "Enhanced values of the RBE and H ratio for cytogenetic effects induced by secondary electrons from an X-irradiated gold gurface" 158 (158): 505-515, 2002
17 K. Greish, "Enhanced permeability and retention(EPR)effect for anticancer nanomedicine drug targeting" 624 : 25-37, 2010
18 A. Mesbahi, "Effect of photon beam energy, gold nanoparticle size and concentration on the dose enhancement in radiation therapy" 3 (3): 29-35, 2013
19 D. Jette, "Creating a spread-out Bragg peak in proton beams" 56 (56): 131-138, 2011
20 T. Bortfeld, "An analytical approximation of the Bragg curve for therapeutic proton beam" 24 (24): 2024-2033, 1997
21 T. Bortfeld, "An analytic approximation of depth-dose distributions for therapeutic proton beams" 41 (41): 1331-1339, 1996
22 J. E. Sardi, "A critical overview of concurrent chemoradiotherapy in cervical cancer" 6 (6): 463-470, 2004