RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Necessity of Protective Coordination Systems According to Battery Capacity

      한글로보기

      https://www.riss.kr/link?id=A108461452

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      As the capacity of lithium-based batteries rapidly is increasing, the number of applications using them is continuously increasing. However, this leads to the risk of fire and explosion, and thus, the number of accidents is increasing. To analyze the ...

      As the capacity of lithium-based batteries rapidly is increasing, the number of applications using them is continuously increasing. However, this leads to the risk of fire and explosion, and thus, the number of accidents is increasing. To analyze the magnitude of short circuit currents according to the battery capacity and external circuit impedance and the necessity of protective coordination, this study conducted experiments using cylindrical batteries with capacities of 800, 2200, 3000, and 5000 mAh and cables with an impedance of 0.1Ω/m. Results indicated that as the battery capacity increased, the short circuit current increased and circuit-opening time decreased. However, as the circuit impedance increased, the short circuit current decreased and circuit-opening time increased. Based on these results, we reviewed protective systems applied to batteries and analyzed their problems. For protective systems designed considering the maximum short circuit current, if the state of charge is low or the impedance is high at the point of short circuit, the protective system does not operate when short circuit occurs, thus failing to block the circuit and potentially leading to fire. Therefore, while designing protective systems, it is appropriate to use multiple circuit breakers and fuses, considering the short circuit current according to the battery capacity and circuit impedance to enable protective coordination between devices.

      더보기

      목차 (Table of Contents)

      • 1. Introduction
      • 2. Short Circuit Current and Protective Coordination System
      • 3. Experimental Setup
      • 4. Experimental Results
      • 5. Conclusions
      • 1. Introduction
      • 2. Short Circuit Current and Protective Coordination System
      • 3. Experimental Setup
      • 4. Experimental Results
      • 5. Conclusions
      • Author Contributions
      • Conflicts of Interest
      • References
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼