RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Track Compensation Algorithm using Free Space Information with Occupancy Grid Map

      한글로보기

      https://www.riss.kr/link?id=A107242827

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Over the past few years, numerous technologies have emerged to enable safe and convenient driving. However, there still exist various problems autonomous vehicles should overcome. Precise detection and perceptionof surrounding environments are the ess...

      Over the past few years, numerous technologies have emerged to enable safe and convenient driving.
      However, there still exist various problems autonomous vehicles should overcome. Precise detection and perceptionof surrounding environments are the essential foundations to overcome them. Consequently, many sensor fusionalgorithms have been developed to handle more complex situations, with sensor manufacturers also making strenuous efforts to enhance sensor performance. Although Light Detection And Ranging(LiDAR) sensor generallyoutperforms other sensor types, they remain prohibitively expensive from car manufacturing companies perspective. Therefore, camera and radar sensors have been enhanced, and are starting to provide free space information,similar to LiDAR sensor data and somewhat different from target information they have previously provided. Theaim of this paper was to utilize the free space information to improve track information for vehicles. We employthe probability model with two occupancy grid map (OGM) types, which are Bayesian theory and Dempster-Shafertheory based OGMs, to classify free space information states and to efficiently handle free space information. Finaloutput from the proposed algorithm is the target vehicle’s compensated track. Experimental results verify superiorperformance compared with non-compensated algorithms.

      더보기

      참고문헌 (Reference)

      1 A. Elfes, "Using occupancy grids for mobile robot perception and navigation" 22 : 46-57, 1989

      2 M. Aeberhard, "Track-to-track fusion with asynchronous sensors using information matrix fusion for surround environment perception" 13 (13): 1717-1726, 2012

      3 M. Li, "Smart Cities, Green Technologies and Intelligent Transport Systems" 202-226, 2018

      4 C. J. Lee, "Sensor fusion for vehicle tracking based on the estimated probability" 12 (12): 1386-1395, 2018

      5 J. Marzbanrad, "Self-tuning control algorithm design for vehicle adaptive cruise control system through real-time estimation of vehicle parameters and road grade" 54 (54): 1291-1316, 2016

      6 L. Rummelhard, "Probabilistic grid-based collision risk prediction for driving application" 821-834, 2016

      7 R. Danescu, "Particle grid tracking system stereovision based obstacle perception in driving environments" 4 (4): 6-20, 2012

      8 J. Porebski, "Occupancy grid for static environment perception in series automotive applications" 52 (52): 148-153, 2019

      9 R. Danescu, "Modeling and tracking the driving environment with a particle-based occupancy grid" 12 (12): 1331-1342, 2011

      10 M. Rosenblatt, "Markov chains"

      1 A. Elfes, "Using occupancy grids for mobile robot perception and navigation" 22 : 46-57, 1989

      2 M. Aeberhard, "Track-to-track fusion with asynchronous sensors using information matrix fusion for surround environment perception" 13 (13): 1717-1726, 2012

      3 M. Li, "Smart Cities, Green Technologies and Intelligent Transport Systems" 202-226, 2018

      4 C. J. Lee, "Sensor fusion for vehicle tracking based on the estimated probability" 12 (12): 1386-1395, 2018

      5 J. Marzbanrad, "Self-tuning control algorithm design for vehicle adaptive cruise control system through real-time estimation of vehicle parameters and road grade" 54 (54): 1291-1316, 2016

      6 L. Rummelhard, "Probabilistic grid-based collision risk prediction for driving application" 821-834, 2016

      7 R. Danescu, "Particle grid tracking system stereovision based obstacle perception in driving environments" 4 (4): 6-20, 2012

      8 J. Porebski, "Occupancy grid for static environment perception in series automotive applications" 52 (52): 148-153, 2019

      9 R. Danescu, "Modeling and tracking the driving environment with a particle-based occupancy grid" 12 (12): 1331-1342, 2011

      10 M. Rosenblatt, "Markov chains"

      11 A. Ho, "Integrating Automobile Multiple Intelligent Warning Systems : Performance and Policy Implications" Massachusetts Institute of Technology 2007

      12 S. Steyer, "Grid-based environment estimation using evidential mapping and particle tracking" 3 (3): 384-396, 2018

      13 S. Steyer, "Grid-based environment estimation using evidential mapping and particle tracking" 3 (3): 384-396, 2018

      14 H. Badino, "Free space computation using stochastic occupancy grids and dynamic programming" 2007

      15 V. Alonso, "Footprint-based classification of road moving objects using occupancy grids" 1052-1057, 2017

      16 G. Tanzmeister, "Evidential grid-based tracking and mapping" 18 (18): 1454-1467, 2015

      17 G. Tanzmeister, "Evidential grid-based tracking and mapping" 18 (18): 1454-1467, 2017

      18 C. Lundquist, "Estimation of the free space in front of a moving vehicle" Automatic Control at Linköpings Universitet 2009

      19 A. Barth, "Estimating the driving state of oncoming vehicles from a moving platform using stereo vision" 10 (10): 560-571, 2009

      20 J. Yao, "Estimating drivable collision-free space from monocular video" 420-427, 2015

      21 L. Gorelick, "Convexity shape prior for binary segmentation" 39 (39): 258-271, 2016

      22 L. Rummelhard, "Conditional Monte Carlo dense occupancy tracker" 2485-2490, 2015

      23 M. Schreier, "Compact representation of dynamic driving environments for ADAS by parametric free space and dynamic object maps" 17 (17): 367-384, 2015

      24 D. Hoiem, "Automatic photo pop-up" 2005

      25 A. Ziebinski, "A survey of ADAS technologies for the future perspective of sensor fusion" 135-156, 2016

      26 A. P. Dempster, "A generalization of Bayesian inference" 30 (30): 205-247, 1968

      27 L. Xiao, "A comprehensive review of the development of adaptive cruise control system" 48 (48): 1167-1192, 2010

      28 G. Shafer, "A Mathematical Theory of Evidence" Princeton Univ. Press 1976

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-12-29 학회명변경 한글명 : 제어ㆍ로봇ㆍ시스템학회 -> 제어·로봇·시스템학회 KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-10-29 학회명변경 한글명 : 제어ㆍ자동화ㆍ시스템공학회 -> 제어ㆍ로봇ㆍ시스템학회
      영문명 : The Institute Of Control, Automation, And Systems Engineers, Korea -> Institute of Control, Robotics and Systems
      KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.35 0.6 1.07
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.88 0.73 0.388 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼