To obtain the gamma-ray energy spectrum of artificial radionuclides which is difficult to obtain practically, virtual gamma-ray energy spectrum simulator program was developed. It can be applied for the predetermined measurement condition for which th...
To obtain the gamma-ray energy spectrum of artificial radionuclides which is difficult to obtain practically, virtual gamma-ray energy spectrum simulator program was developed. It can be applied for the predetermined measurement condition for which the database was developed through computational simulation and actual measurement of background radiation. For gamma spectrometry training for KHNP HPGe detectors using this program, the database for KNPG HPGe detectors was developed. First, the geometry of the detector in the simulation was adjusted to resemble the real structure by comparing the actually measured net counts rate at the main gamma peak with the value simulated by MCNP6. The Certified Reference material (CRM) of 137Cs and 60Co were used for verification. The comparison was made with respect to the situation where CRM was attached to the top and side of the detection part of the considered detector. The geometry structures of detectors were simulated by reflecting the design drawing of the products, and the simulation was performed for several thicknesses of the Ge/Li dead layer in consideration of the change in the thickness over time. As the results, the simulation geometry was tuned so that the results for 137Cs showed a difference within 10% for all detectors. At this time, in some detectors, the result for 60Co shows a 10% higher error, which is estimated to be due to the random summing. It was not considered in tuning the simulation geometry, but it was found that improvements were needed to reflect the coincidence summing when construction the virtual spectrum in the future. The determined simulation geometry was applied to generate theoretical gamma-ray energy spectra of representative artificial radionuclides. In order to create a virtual spectrum similar to the real one, the background spectrum was measured for each detector without a source, and the simulation results were calculated in the form of having the same energy channel as the background spectrum. The background spectrum and theoretical spectra of artificial radionuclides for each detector were databased so that virtual spectra could be generated under desired conditions. The virtual spectrum was generated by adding a background spectrum and a spectrum obtained by multiplying the spectrum of the desired nuclide by the concentration of the nuclide. The validity of generated virtual spectra was verified using the pre-developed gamma spectrometry program. As a results of gamma spectrometry of virtual spectra, the virtual spectra was verified by showing a difference within 20% from the radioactivity value input when generating the virtual spectra.