RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Revisiting the Recharge and Discharge Processes for Different Flavors of El Niño

      한글로보기

      https://www.riss.kr/link?id=O111339014

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2021년

      • 작성언어

        -

      • Print ISSN

        2169-9275

      • Online ISSN

        2169-9291

      • 등재정보

        SCOPUS;SCIE

      • 자료형태

        학술저널

      • 수록면

        n/a-n/a   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 계명대학교 동산도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      El Niño‐related sea surface temperature (SST) anomalies over the tropical Pacific Ocean impact global climates, but these impacts differ substantially for conventional cold tongue El Niño (CT El Niño) and the central Pacific El Niño (CP El Niño...

      El Niño‐related sea surface temperature (SST) anomalies over the tropical Pacific Ocean impact global climates, but these impacts differ substantially for conventional cold tongue El Niño (CT El Niño) and the central Pacific El Niño (CP El Niño) events. This study is motivated by the need for a better understanding of the recharge/discharge processes associated with these two different flavors of El Niño. Composite analysis based on improved CT and CP El Niño identification methods applied to the Simple Ocean Data Assimilation demonstrates that the recharge/discharge processes are active during CT El Niño events. In contrast, for CP El Niño events, the recharge/discharge processes do not play a significant role. Prior to a CT El Niño, warm water accumulates over the western Pacific due to off‐equatorial anticyclonic wind stress curl. The onset of a CT El Niño is closely associated with the formation of a cyclonic atmospheric circulation over the northwest Pacific in the winter and spring, which induces westerly wind anomalies in the equatorial western Pacific and initiates eastward warm water transport. This leads to peak warming in the eastern equatorial Pacific the following winter, followed by the poleward discharge of warm water. This quasi‐cyclical behavior provides a measure of predictability. In contrast, the CP El Niño events do not show a precursor subsurface warming signal along the tropical Pacific thermocline. Instead, modest warm SST anomalies appear in boreal summer and peak in the fall, with weak subsurface warming mainly in the fall during CP El Niños. Hence, CP El Niños are less predictable in terms of an equatorial thermocline precursor than CT El Niño events.
      The El Niño‐Southern Oscillation (ENSO) is the largest source of year‐to‐year climate variability. ENSO has a pronounced influence on regional and global circulation and precipitation patterns and thus has considerable worldwide socio‐economical impacts. El Niño, the warm phase of ENSO, exhibits modulation in the longitudinal location of its maximum warming, creating what is referred to as ENSO diversity. For conventional El Niño events, maximum surface warming is located in the eastern equatorial Pacific, for which subsurface warming along the tropical Pacific has proven to serve as a predictor several months in advance. Previous studies disagree on whether this subsurface warming is similarly essential for El Niño events that have peak surface warming in the central Pacific. We developed an improved method for identifying these two types of El Niño in an ocean reanalysis product. Using this improved method, we find no clear evidence of a subsurface warming precursor for the central Pacific El Niño events along the equator. This lack of a tropical subsurface precursor limits our ability to predict these types of El Niño events.



      The Simple Ocean Data Assimilation system is used to study the composite behavior of eastern‐ and central‐Pacific El Niño events

      Tropical Pacific subsurface recharge‐discharge processes are significantly different for cold eastern‐ and central‐Pacific El Niño events

      Positive subsurface heat content anomalies are a not a precursor of central Pacific El Niño events, making them far less predictable


      The Simple Ocean Data Assimilation system is used to study the composite behavior of eastern‐ and central‐Pacific El Niño events
      Tropical Pacific subsurface recharge‐discharge processes are significantly different for cold eastern‐ and central‐Pacific El Niño events
      Positive subsurface heat content anomalies are a not a precursor of central Pacific El Niño events, making them far less predictable

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼