RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Preparation of lead-free piezoelectric (K0.5Na0.5)NbO3 nanopowder by a simple aqueous route

      한글로보기

      https://www.riss.kr/link?id=A106586744

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      (K0.5Na0.5)NbO3-based ceramic powders for lead-free piezoelectric applications are usually prepared by solid state synthesis.
      This generally involves wet ball milling in an organic liquid such as ethanol, which is a drawback for industrial production.
      In the present work, a method for the preparation of NaNbO3 nanopowders is modified to produce a simple method ofpreparing (K0.5Na0.5)NbO3 nanopowders by an aqueous route. K2CO3, Na2CO3 and NH4[NbO(C2O4)2].xH2O are mixed inwater and dried to form a gel, which is then calcined at temperatures between 400 ~ 650 °C for 1 h. The uncalcined gel andcalcination products are analysed using Thermogravimetric Analysis/Differential Thermal Analysis, X-ray Diffraction, FourierTransform Infrared Spectroscopy, Scanning Electron Microscopy, Transmission Electron Microscopy and Raman Scattering.
      A single phase tetragonal (K0.5Na0.5)NbO3 nanopowder with a particle size of ~ 30 nm can be produced after calcination at650 °C for 1 h.
      번역하기

      (K0.5Na0.5)NbO3-based ceramic powders for lead-free piezoelectric applications are usually prepared by solid state synthesis. This generally involves wet ball milling in an organic liquid such as ethanol, which is a drawback for industrial production....

      (K0.5Na0.5)NbO3-based ceramic powders for lead-free piezoelectric applications are usually prepared by solid state synthesis.
      This generally involves wet ball milling in an organic liquid such as ethanol, which is a drawback for industrial production.
      In the present work, a method for the preparation of NaNbO3 nanopowders is modified to produce a simple method ofpreparing (K0.5Na0.5)NbO3 nanopowders by an aqueous route. K2CO3, Na2CO3 and NH4[NbO(C2O4)2].xH2O are mixed inwater and dried to form a gel, which is then calcined at temperatures between 400 ~ 650 °C for 1 h. The uncalcined gel andcalcination products are analysed using Thermogravimetric Analysis/Differential Thermal Analysis, X-ray Diffraction, FourierTransform Infrared Spectroscopy, Scanning Electron Microscopy, Transmission Electron Microscopy and Raman Scattering.
      A single phase tetragonal (K0.5Na0.5)NbO3 nanopowder with a particle size of ~ 30 nm can be produced after calcination at650 °C for 1 h.

      더보기

      참고문헌 (Reference)

      1 J. Rödel, 92 (92): 1153-1177, 2009

      2 B. Malic, 91 (91): 1916-1922, 2008

      3 B. Malič, 8 (8): 5449-, 2015

      4 J. Wu, 115 (115): 2559-2595, 2015

      5 M. Villafuerte-Castrejón, 9 (9): 21-, 2016

      6 K. Wang, 43 (43): 607-611, 2018

      7 H. -C. Thong, 29 : 37-48, 2019

      8 H. Birol, 26 (26): 861-866, 2006

      9 J. G. Fisher, 479 (479): 467-472, 2009

      10 J. Hreščak, 33 (33): 3065-3075, 2013

      1 J. Rödel, 92 (92): 1153-1177, 2009

      2 B. Malic, 91 (91): 1916-1922, 2008

      3 B. Malič, 8 (8): 5449-, 2015

      4 J. Wu, 115 (115): 2559-2595, 2015

      5 M. Villafuerte-Castrejón, 9 (9): 21-, 2016

      6 K. Wang, 43 (43): 607-611, 2018

      7 H. -C. Thong, 29 : 37-48, 2019

      8 H. Birol, 26 (26): 861-866, 2006

      9 J. G. Fisher, 479 (479): 467-472, 2009

      10 J. Hreščak, 33 (33): 3065-3075, 2013

      11 N. Marandian Hagh, 18 (18): 339-346, 2007

      12 J. Koruza, 4 (4): 13-26, 2018

      13 H. -C. Thong, 166 : 551-559, 2019

      14 H. -C. Thong, 102 (102): 836-844, 2019

      15 H. Yang, 23 (23): 489-493, 2008

      16 A. Chowdhury, 92 (92): 758-761, 2009

      17 A. D. Handoko, 12 (12): 680-687, 2010

      18 G. Stavber, 13 (13): 1303-1310, 2011

      19 Y. Hou, 134 (134): 518-522, 2012

      20 D. -Q. Zhang, 39 (39): 5931-5935, 2013

      21 R. López-Juárez, 40 (40): 14757-14764, 2014

      22 A. B. Haugen, 35 (35): 1449-1457, 2015

      23 X. Meng, 212 : 1-6, 2016

      24 S. Toyama, 107 : 1-8, 2016

      25 Y. Wang, 685 : 1-7, 2016

      26 G. H. Khorrami, 31 (31): 1750175-, 2017

      27 R. Rani, 8 (8): 247-257, 2017

      28 N. Senes, 215 (215): 2018

      29 H. -l. Cheng, 28 (28): 1801-1807, 2018

      30 S. L. Skjærvø, 20 (20): 6795-6802, 2018

      31 B. Chen, 346 : 248-255, 2019

      32 T. Su, 36 (36): 565-575, 2010

      33 F. F. P. Medeiros, 23 : 531-538, 2006

      34 T. T. Su, 98 (98): 449-455, 2009

      35 H. Jiang, 46 (46): 85-89, 2011

      36 I. Nowak, 99 (99): 3603-3624, 1999

      37 V. S. Braga, 17 (17): 690-695, 2005

      38 B. Malic, 755 : 83-88, 2002

      39 J. Hreščak, 127 (127): 129-136, 2017

      40 J. V. Reis, 227 : 261-263, 2018

      41 S. Joshi, 67 (67): 841-845, 2013

      42 T. Ikeya, 105 (105): 243-250, 1988

      43 K. I. Peterson, 93 (93): 1130-1133, 2016

      44 L. Monico, 116 : 270-280, 2013

      45 T. Rojac, 177 (177): 2987-2995, 2006

      46 B.M. Gatehouse, 3137-3142, 1958

      47 G. Busca, 7 (7): 89-126, 1982

      48 J. Rödel, 35 (35): 1659-1681, 2015

      49 N. Klein, 102 (102): 014112-, 2007

      50 Y. Shiratori, 391 (391): 288-292, 2004

      51 G. Rez, 117 (117): 470-474, 2009

      52 M. Mazaheri, 35 (35): 13-20, 2009

      53 C. Wang, 29 (29): 2589-2594, 2009

      54 D. Jenko, 11 (11): 572-580, 2005

      55 K. Kakimoto, 44 (44): 7064-7067, 2005

      56 S.J.L. Kang, "Sintering: Densification, Grain Growth &Microstructure" Elsevier Butterworth Heineman 39-55, 2005

      57 R.M. German, "Sintering Theory and Practice" Wiley 67-141, 1996

      58 B. Jaffe, "Piezoelectric Ceramics" Academic Press 185-212, 1971

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2022-10-24 학회명변경 한글명 : 세라믹연구소 -> 청정에너지연구소
      영문명 : Ceramic Research Institute -> Clean-Energy Research Institute
      KCI등재
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2019-08-19 학회명변경 한글명 : 세라믹공정연구센터 -> 세라믹연구소
      영문명 : Ceramic Processing Research Center -> Ceramic Research Institute
      KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 SCI 등재 (등재후보1차) KCI등재
      2003-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0 0 0
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0 0 0 0
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼