RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE

      Fuzzy Modeling of a Piezoelectric Actuator

      한글로보기

      https://www.riss.kr/link?id=A104245030

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this research, a piezoelectric actuator was modeled using fuzzy subtractive clustering and neuro-fuzzy networks. In the literature, the use of various modeling techniques (excluding techniques used in this article) and different arrangements of inp...

      In this research, a piezoelectric actuator was modeled using fuzzy subtractive clustering and neuro-fuzzy networks. In the literature, the use of various modeling techniques (excluding techniques used in this article) and different arrangements of inputs in black box modeling of piezoelectric actuators for the purpose of displacement prediction has been reported.
      Nowadays, universal approximators are available with proven ability in system modeling; hence, the modeling technique is no longer such a critical issue. Appropriate selection of the inputs to the model is, however, still an unsolved problem, with an absence of comparative studies. While the extremum values of input voltage and/or displacement in each cycle of operation have been used in black box modeling inspired by classical phenomenological methods, some researchers have ignored them. This article focuses on addressing this matter. Despite the fact that classical artificial neural networks, the most popular black box modeling tools, provide no visibility of the internal operation, neuro-fuzzy networks can be converted to fuzzy models. Fuzzy models comprise of fuzzy rules which are formed by a number of fuzzy or linguistic values,and this lets the researcher understand the role of each input in the model in comparison with other inputs, particularly, if fuzzy values (sets) have been selected through subtractive clustering. This unique advantage was employed in this research together with consideration of a few critical but subtle points in model verification which are usually overlooked in black box modeling of piezoelectric actuators.

      더보기

      참고문헌 (Reference)

      1 Han, J. H., "Vibration and Actuation Characteristics of Composite Structures with a Bonded Piezo-Ceramic Actuator" 8 (8): 136-143, 1999

      2 Soderkvist, J., "Using Fea to Treat Piezoelectric Low-Frequency Resonators" 45 (45): 815-823, 1998

      3 Chen, T. P., "Universal Approximation to Nonlinear Operators by Neural Networks with Arbitrary Activation Functions and Its Application to Dynamical Systems" 6 (6): 911-917, 1995

      4 Preisach, F., "Uber Die Magnetische Nachwirkung" 94 (94): 277-302, 1935

      5 김인수, "Sliding Mode Control of the Inchworm Displacement with Hysteresis Compensation" 한국정밀공학회 10 (10): 43-49, 2009

      6 Liaw, H. C., "Robust Adaptive Constrained Motion Tracking Control of Piezo-Actuated Flexure-Based Mechanisms for Micro/Nano Manipulation" 58 (58): 1406-1415, 2011

      7 Dang, X. J., "Rbf Neural Networks Hysteresis Modelling for Piezoceramic Actuator Using Hybrid Model" 21 (21): 430-440, 2007

      8 Sixdenier, F., "Quasistatic Hysteresis Modeling with Feed-Forward NeuralNetworks : Influence of the Last but One Extreme Values" 320 (320): 992-996, 2008

      9 Meeker, T. R., "Publication and Proposed Revision of ANSI/IEEE Standard 176-1987 “ANSI/IEEE Standard on Piezoelectricity" 43 (43): 717-718, 1996

      10 Yu, Y. H., "Preisach Modeling of Hysteresis for Piezoceramic Actuator System" 37 (37): 49-59, 2002

      1 Han, J. H., "Vibration and Actuation Characteristics of Composite Structures with a Bonded Piezo-Ceramic Actuator" 8 (8): 136-143, 1999

      2 Soderkvist, J., "Using Fea to Treat Piezoelectric Low-Frequency Resonators" 45 (45): 815-823, 1998

      3 Chen, T. P., "Universal Approximation to Nonlinear Operators by Neural Networks with Arbitrary Activation Functions and Its Application to Dynamical Systems" 6 (6): 911-917, 1995

      4 Preisach, F., "Uber Die Magnetische Nachwirkung" 94 (94): 277-302, 1935

      5 김인수, "Sliding Mode Control of the Inchworm Displacement with Hysteresis Compensation" 한국정밀공학회 10 (10): 43-49, 2009

      6 Liaw, H. C., "Robust Adaptive Constrained Motion Tracking Control of Piezo-Actuated Flexure-Based Mechanisms for Micro/Nano Manipulation" 58 (58): 1406-1415, 2011

      7 Dang, X. J., "Rbf Neural Networks Hysteresis Modelling for Piezoceramic Actuator Using Hybrid Model" 21 (21): 430-440, 2007

      8 Sixdenier, F., "Quasistatic Hysteresis Modeling with Feed-Forward NeuralNetworks : Influence of the Last but One Extreme Values" 320 (320): 992-996, 2008

      9 Meeker, T. R., "Publication and Proposed Revision of ANSI/IEEE Standard 176-1987 “ANSI/IEEE Standard on Piezoelectricity" 43 (43): 717-718, 1996

      10 Yu, Y. H., "Preisach Modeling of Hysteresis for Piezoceramic Actuator System" 37 (37): 49-59, 2002

      11 Mohammad Zareinejad, "Precision Control of a Piezo-Actuated Micro Telemanipulation System" 한국정밀공학회 11 (11): 55-65, 2010

      12 Hwang, C. L., "Piezomechanics Using Intelligent Variable-Structure Control" 48 (48): 47-59, 2001

      13 Boukari, A. F., "Piezo-Actuators Modeling for Smart Applications" 21 (21): 339-349, 2011

      14 Nelles, O., "Nonlinear System Identfication" Springer 2001

      15 Jang, J.-S. R., "Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence" Prentice Hall 2006

      16 Ahmadpour Khanghashlaghi, M., "Neuro-Fuzzy Modelling of Workers Trip Production" 2009

      17 Zhang, X. L., "Neural Networks Based Identification and Compensation of Rate-Dependent Hysteresis in Piezoelectric Actuators" 405 (405): 2687-2693, 2010

      18 Xie, W. F., "Neural Network-Based Adaptive Control of Piezoelectric Actuators with Unknown Hysteresis" 23 (23): 30-54, 2009

      19 Zhang, J., "Neural Network Predictive Control for Piezoelectric Smart Structures" 2 : 417-421, 2008

      20 Makaveev, D., "Modeling of Quasistatic Magnetic Hysteresis with Feed-Forward Neural Networks" 89 (89): 6737-6739, 2001

      21 Song, D. W., "Modeling of Piezo Actuator’s Nonlinear and Frequency Dependent Dynamics" 9 (9): 391-410, 1999

      22 Zhang, X. L., "Modeling of Hysteresis in Piezoelectric Actuators Using Neural Networks" 23 (23): 2699-2711, 2009

      23 Deng, L., "Modeling Hysteresis in Piezoelectric Actuators Using Narmax Models" 149 (149): 106-112, 2009

      24 Ge, P., "Modeling Hysteresis in Piezoceramic Actuators" 17 (17): 211-221, 1995

      25 Yang, X. F., "Modeling Hysteresis in Piezo Actuator Based on Neural Networks" 5370 : 290-296, 2008

      26 Mohammadzaheri, M., "Intelliegnt Predictive Control of Model Helicopters’ Yaw Angle" 12 (12): 1-13, 2010

      27 김승우, "Improvement of scanning accuracy of PZT piezoelectric actuators by feed-forward model-reference control" Elsevier Inc. 16 (16): 49-55, 199401

      28 Han, Y., "Implementation Procedure for the Generalized Moving Preisach Model Based on a First Order Reversal Curve Diagram" 28 (28): 355-360, 2009

      29 Zhang, Y. D., "Image-Based Hysteresis Modeling and Compensation for anAfm Piezo-Scanner" 11 (11): 166-174, 2009

      30 Ghaffari, A., "Identification and Control of Power Plant De-SuperheaterUsing Soft Computing Techniques" 20 (20): 273-287, 2007

      31 Mohammadzaheri, M., "Hybrid Intelligent Control of an Infrared Dryer" 1-10, 2010

      32 Dupre, L., "Generalized Scalar Preisach Model for Grain Oriented Materials Excited Along Arbitrary Directions" 89 (89): 7245-7247, 2001

      33 Ge, P., "Generalized Preisach Model for Hysteresis Nonlinearity of Piezoceramic Actuators" 20 (20): 99-111, 1997

      34 Ying, H., "General Takagi-Sugeno Fuzzy Systems Are Universal Approximators" 1 : 819-823, 1998

      35 Ying, H., "General Siso Takagi-Sugeno Fuzzy Systems with Linear Rule Consequent Are Universal Approximators" 6 (6): 582-587, 1998

      36 Mathworks, "Fuzzy Logic Toolbox™ User’s Guide"

      37 Wang, G., "Frequency Response of Beams with Passively Constrained Damping Layers and Piezo- Actuators" 3327 : 44-60, 1998

      38 Deng, H., "Feedback-Linearization- Based Neural Adaptive Control for Unknown Nonaffine Nonlinear Discrete-Time Systems" 19 (19): 1615-1625, 2008

      39 Rakotondrabe, M., "Bouc-Wen Modeling and Inverse Multiplicative Structure to Compensate Hysteresis Nonlinearity in Piezoelectric Actuators" 8 (8): 428-431, 2011

      40 Park, J., "Approximation and Radial-Basis- Function Networks" 5 (5): 305-316, 1993

      41 Chen, T. P., "Approximation Capability to Functions of Several Variables, Nonlinear Functionals, and Operators by Radial Basis Function Neural Networks" 6 (6): 904-910, 1995

      42 Chen, T. P., "Approximation Capability in C((R)over-Bar(N))by Multilayer Feedforward Networks and Related Problems" 6 (6): 25-30, 1995

      43 Leigh, T. D., "An Implicit Method for the Nonlinear Modelling and Simulation of Piezoceramic Actuators Displaying Hysteresis" 57-63, 1991

      44 Lin, F. J., "Adaptive Wavelet Neural Network Control with Hysteresis Estimation for Piezo- Positioning Mechanism" 17 (17): 432-444, 2006

      45 Lin, F. J., "Adaptive Control with Hysteresis Estimation and Compensation Using Rfnn for Piezo-Actuator" 53 (53): 1649-1661, 2006

      46 Li, C., "A Neural Networks Model for Hysteresis Nonlinearity" 112 (112): 49-54, 2004

      47 Dong, R., "A Neural Networks Based Model for Rate-Dependent Hysteresis for Piezoceramic Actuators" 143 (143): 370-376, 2008

      48 Zhang, X. L., "A Hybrid Model for Rate- Dependent Hysteresis in Piezoelectric Actuators" 157 (157): 54-60, 2010

      49 Mohammadzaheri, M., "A Critical Review of the Most Popular Types of Neuro Control" 14 (14): 1-11, 2012

      50 Mohammadzaheri, M., "A Combination of Linear and Nonlinear Activation Functions in Neural Networks for Modeling a De-Superheater" 17 (17): 398-407, 2009

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-06-23 학회명변경 영문명 : Korean Society Of Precision Engineering -> Korean Society for Precision Engineering KCI등재
      2006-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2005-05-30 학술지명변경 한글명 : 한국정밀공학회 영문논문집 -> International Journal of the Korean of Precision Engineering KCI등재후보
      2005-05-30 학술지명변경 한글명 : International Journal of the Korean of Precision Engineering -> International Journal of Precision Engineering and Manufacturing
      외국어명 : International Journal of the Korean of Precision Engineering -> International Journal of Precision Engineering and Manufacturing
      KCI등재후보
      2005-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.38 0.71 1.08
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.92 0.85 0.583 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼