RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      뇌전증 발작 탐지를 위한 CNN 기반 앙상블 모델

      한글로보기

      https://www.riss.kr/link?id=A107820070

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper, A CNN-based ensemble model for epileptic seizure detection is proposed. The proposed model improves seizure detection performance through a structure that merges the training results of AlexNet, VGG16, VGG19 models and retrains the merged data into the MLP model. In addition, the proposed model rearrange the learning results of the three models used in the merge phase into one-dimensional data, learn the merged data in the re-learning phase into an MLP model with a fully connected layer, and derive the final results through the softmax function. As a result of the CPSM experiment using the CHB-MIT Scalp EEG Database with the proposed model, the average sensitivity of 92% and the FPR of 0.36 were obtained.
      번역하기

      In this paper, A CNN-based ensemble model for epileptic seizure detection is proposed. The proposed model improves seizure detection performance through a structure that merges the training results of AlexNet, VGG16, VGG19 models and retrains the merg...

      In this paper, A CNN-based ensemble model for epileptic seizure detection is proposed. The proposed model improves seizure detection performance through a structure that merges the training results of AlexNet, VGG16, VGG19 models and retrains the merged data into the MLP model. In addition, the proposed model rearrange the learning results of the three models used in the merge phase into one-dimensional data, learn the merged data in the re-learning phase into an MLP model with a fully connected layer, and derive the final results through the softmax function. As a result of the CPSM experiment using the CHB-MIT Scalp EEG Database with the proposed model, the average sensitivity of 92% and the FPR of 0.36 were obtained.

      더보기

      목차 (Table of Contents)

      • Abstract
      • I. 서론
      • II. CNN 기반 앙상블 모델
      • Ⅲ. 결론
      • 참고문헌
      • Abstract
      • I. 서론
      • II. CNN 기반 앙상블 모델
      • Ⅲ. 결론
      • 참고문헌
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼