RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCIE SCOPUS

      Microchannel system for rate-controlled, sequential, and pH-responsive drug delivery

      한글로보기

      https://www.riss.kr/link?id=A107471516

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P><B>Abstract</B></P> <P>Controlled delivery of drug at a constant rate, in a sequential order, or responsive to environment conditions has been pursued for a long time to enhance the efficacy of therapeutic molecules a...

      <P><B>Abstract</B></P> <P>Controlled delivery of drug at a constant rate, in a sequential order, or responsive to environment conditions has been pursued for a long time to enhance the efficacy of therapeutic molecules and to minimize side effects of highly potent drugs. However, achieving such delicately-controlled delivery of a drug molecule is non-trivial and still remains a challenge. We propose the use of microchannels to control the rate, sequence, and pH-responsiveness of drug delivery for high precision and predictability. In this study, we introduce elementary drug delivery units consisting of micro-reservoirs and microchannels that have variations in their lengths, widths, numbers, and straightness. The release study demonstrates that the release rates of model drugs can be modulated by the design of microchannels. Finite element modeling of drug release predicts the performance of the drug delivery units with high accuracy. The possibility of sequential drug delivery is also demonstrated using biodegradable polymer plug in microchannels. Finally, pH-responsive delivery of drugs in microfluidic units is also discussed and demonstrated via cell viability tests.</P> <P><B>Statement of Significance</B></P> <P>In this work, we developed microchannel-based drug delivery devices whose release rate could be accurately calculated and controlled by design of microchannel geometry. Although there have been many advances in microfabricated drug delivery systems, in particular, reservoir-based systems, no systematic investigation has been made to utilize the release channels. In our work, an equivalent electrical circuit concept was applied to the microfluidic systems for more detailed design and analysis. A microfluidic channel was regarded as an electrical resistor; their diffusion/electrical flux could be tuned with geometric factors such as length, width, a number of channel/resistor and their connections. Furthermore, from delivery rate control using channel geometry, multifunctional channel-based release systems for sequential and pH-responsive were demonstrated.</P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼