RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Subchondral Bone Radiodensity Patterns in the Glenoid Fossa of Ape and Human Scapulae

      한글로보기

      https://www.riss.kr/link?id=O115565728

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2018년

      • 작성언어

        -

      • Print ISSN

        1932-8486

      • Online ISSN

        1932-8494

      • 등재정보

        SCOPUS;SCIE

      • 자료형태

        학술저널

      • 수록면

        776-785   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 소장기관
      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 계명대학교 동산도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Regions of denser subchondral bone deep to a joint's articular surface indicate locations where the joint experiences relatively higher or more frequent compressive trans‐articular forces than less dense regions. Human clinically focused studies have hypothesized that regional variation of acquired with computed tomography osteoabsorptiomety (CT‐OAM), in the scapular glenoid fossa (GF) is specifically related to forces arising from everyday rotator cuff muscle function. We test this hypothesis by investigating the relationship between rotator cuff function and GF HiRD subchondral bone patterns in a broader comparative context. CT‐OAM was used on scapulae of chimpanzees, gibbons and humans to visualize HiRD subchondral bone patterns and assess regional (anterior–posterior; superior–inferior) differences in HiRD concentrations within each group. Like patterns observed in humans, ape GFs show HiRD concentrations in anterior, posterior and superior regions. Gibbons exhibit significantly larger concentrations anteriorly, probably serving as a skeletal correlate of increased subscapularis activity during humeral internal rotation during arm‐swinging locomotion. Chimpanzees exhibit relatively larger areas posteriorly (though not statistically significant), conceivably serving as a correlate of increased infraspinatus activity during humeral external rotation and retraction during knuckle‐walking. All groups show relatively larger HiRD areas superiorly, likely correlating with forceful humeral abduction (rather than adduction) during routine upper limb use across behaviors. Subchondral bone HiRD patterns in the GF appear to correspond with normal and unbalanced rotator cuff activity and force production not only in humans, but also in other primates, thereby corroborating their value in human clinical studies and functional morphology research. Anat Rec, 301:776–785, 2018. © 2017 Wiley Periodicals, Inc.
      번역하기

      Regions of denser subchondral bone deep to a joint's articular surface indicate locations where the joint experiences relatively higher or more frequent compressive trans‐articular forces than less dense regions. Human clinically focused studies hav...

      Regions of denser subchondral bone deep to a joint's articular surface indicate locations where the joint experiences relatively higher or more frequent compressive trans‐articular forces than less dense regions. Human clinically focused studies have hypothesized that regional variation of acquired with computed tomography osteoabsorptiomety (CT‐OAM), in the scapular glenoid fossa (GF) is specifically related to forces arising from everyday rotator cuff muscle function. We test this hypothesis by investigating the relationship between rotator cuff function and GF HiRD subchondral bone patterns in a broader comparative context. CT‐OAM was used on scapulae of chimpanzees, gibbons and humans to visualize HiRD subchondral bone patterns and assess regional (anterior–posterior; superior–inferior) differences in HiRD concentrations within each group. Like patterns observed in humans, ape GFs show HiRD concentrations in anterior, posterior and superior regions. Gibbons exhibit significantly larger concentrations anteriorly, probably serving as a skeletal correlate of increased subscapularis activity during humeral internal rotation during arm‐swinging locomotion. Chimpanzees exhibit relatively larger areas posteriorly (though not statistically significant), conceivably serving as a correlate of increased infraspinatus activity during humeral external rotation and retraction during knuckle‐walking. All groups show relatively larger HiRD areas superiorly, likely correlating with forceful humeral abduction (rather than adduction) during routine upper limb use across behaviors. Subchondral bone HiRD patterns in the GF appear to correspond with normal and unbalanced rotator cuff activity and force production not only in humans, but also in other primates, thereby corroborating their value in human clinical studies and functional morphology research. Anat Rec, 301:776–785, 2018. © 2017 Wiley Periodicals, Inc.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼