Let k be a positive integer and let G be a simple graph with vertex set V(G). A function <수식> is called a signed total k-dominating function if <수식> for each vertex v ∈V(G). A set {f1, f2,..., fd} of signed total k-dominating fun...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A103359934
Abdollah Khodkar (University of West Georgia) ; S. M. Sheikholeslami (Azarbaijan University of Tarbiat Moallem)
2011
English
KCI등재,SCIE,SCOPUS
학술저널
551-563(13쪽)
2
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
Let k be a positive integer and let G be a simple graph with vertex set V(G). A function <수식> is called a signed total k-dominating function if <수식> for each vertex v ∈V(G). A set {f1, f2,..., fd} of signed total k-dominating fun...
Let k be a positive integer and let G be a simple graph with vertex set V(G). A function <수식> is called a signed total k-dominating function if <수식> for each vertex v ∈V(G). A set {f1, f2,..., fd} of signed total k-dominating functions of G with the property that <수식> for each v ∈ V(G), is called a signed total k-dominating family (of functions) of G. The maximum number of functions in a signed total k-dominating family of G is the signed total k-domatic number of G, denoted by d^t_(kS)(G). In this note we initiate the study of the signed total k-domatic numbers of graphs and present some sharp upper bounds for this parameter. We also determine the signed total k-domatic numbers of complete graphs and complete bipartite graphs.
참고문헌 (Reference)
1 C. P. Wang, "The signed k-domination numbers in graphs"
2 B. Zelinka, "Signed total domination number of a graph" 51 (51): 225-229, 2001
3 M. A. Henning, "Signed total domination in graphs" 278 (278): 109-125, 2004
4 M. Guan, "Signed total domatic number of a graph" 12 (12): 31-34, 2008
5 M. A. Henning, "On the signed total domatic number of a graph" 79 : 277-288, 2006
6 D. B. West, "Introduction to Graph Theory" Prentice-Hall 2000
1 C. P. Wang, "The signed k-domination numbers in graphs"
2 B. Zelinka, "Signed total domination number of a graph" 51 (51): 225-229, 2001
3 M. A. Henning, "Signed total domination in graphs" 278 (278): 109-125, 2004
4 M. Guan, "Signed total domatic number of a graph" 12 (12): 31-34, 2008
5 M. A. Henning, "On the signed total domatic number of a graph" 79 : 277-288, 2006
6 D. B. West, "Introduction to Graph Theory" Prentice-Hall 2000
CRITICAL EXPONENTS FOR A DOUBLY DEGENERATE PARABOLIC SYSTEM COUPLED VIA NONLINEAR BOUNDARY FLUX
SIGNED TOTAL κ-DOMATIC NUMBERS OF GRAPHS
A VERY SIMPLE CHARACTERIZATION OF GROMOV HYPERBOLICITY FOR A SPECIAL KIND OF DENJOY DOMAINS
학술지 이력
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2023 | 평가예정 | 해외DB학술지평가 신청대상 (해외등재 학술지 평가) | |
2020-01-01 | 평가 | 등재학술지 유지 (해외등재 학술지 평가) | |
2010-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2008-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2006-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2004-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2001-07-01 | 평가 | 등재학술지 선정 (등재후보2차) | |
1999-01-01 | 평가 | 등재후보학술지 선정 (신규평가) |
학술지 인용정보
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 0.4 | 0.14 | 0.3 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
0.23 | 0.19 | 0.375 | 0.03 |