RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Likelihood-Free Hypothesis Testing and Applications of the Energy Distance.

      한글로보기

      https://www.riss.kr/link?id=T17249879

      • 저자
      • 발행사항

        Ann Arbor : ProQuest Dissertations & Theses, 2024

      • 학위수여대학

        Massachusetts Institute of Technology Department of Mathematics

      • 수여연도

        2024

      • 작성언어

        영어

      • 주제어
      • 학위

        Ph.D.

      • 페이지수

        266 p.

      • 지도교수/심사위원

        Advisor: Rigollet, Philippe.

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      소속기관이 구독 중이 아닌 경우 오후 4시부터 익일 오전 9시까지 원문보기가 가능합니다.

      부가정보

      다국어 초록 (Multilingual Abstract)

      This thesis studies questions in nonparametric testing and estimation that are inspired by machine learning. One of the main problems of our interest is likelihood-free hypothesis testing: given three samples X, Y and Z with sample sizes n, n and m respectively, one must decide whether the distribution of Z is closer to that of X or that of Y. We fully characterize the problem’s sample complexity for multiple distribution classes and with high probability. We uncover connections to two-sample, goodness-of-fit and robust testing, and show the existence of a trade-off of the form mn ≍ k/ε4, where k is an appropriate notion of complexity and ε is the total variation separation between the distributions of X and Y. We generalize our problem to allow Z to come from a mixture of the distributions of X and Y, and propose a kernel-based test for its solution, and also verify the existence of a trade-off between m and n on experimental data from particle physics. In addition, we demonstrate that the family of “classifier accuracy” tests are not only popular in practice but also provably near-optimal, recovering and simplifying a multitude of classical and recent results. Finally, we study affine classifiers as a tool for estimation and testing, with the key technical tool being a connection to the energy distance. In particular, we propose a density estimation routine based on minimizing the generalized energy distance, targeting smooth densities and Gaussian mixtures. We interpret our results in terms of half-space separability over these classes, and derive analogous results for discrete distributions. As a consequence we deduce that any two discrete distributions are well-separated by a half-space, provided their support is embedded as a packing of a high-dimensional unit ball. We also scrutinize two recent applications of the energy distance in the two-sample testing literature.
      번역하기

      This thesis studies questions in nonparametric testing and estimation that are inspired by machine learning. One of the main problems of our interest is likelihood-free hypothesis testing: given three samples X, Y and Z with sample sizes n, n and m r...

      This thesis studies questions in nonparametric testing and estimation that are inspired by machine learning. One of the main problems of our interest is likelihood-free hypothesis testing: given three samples X, Y and Z with sample sizes n, n and m respectively, one must decide whether the distribution of Z is closer to that of X or that of Y. We fully characterize the problem’s sample complexity for multiple distribution classes and with high probability. We uncover connections to two-sample, goodness-of-fit and robust testing, and show the existence of a trade-off of the form mn ≍ k/ε4, where k is an appropriate notion of complexity and ε is the total variation separation between the distributions of X and Y. We generalize our problem to allow Z to come from a mixture of the distributions of X and Y, and propose a kernel-based test for its solution, and also verify the existence of a trade-off between m and n on experimental data from particle physics. In addition, we demonstrate that the family of “classifier accuracy” tests are not only popular in practice but also provably near-optimal, recovering and simplifying a multitude of classical and recent results. Finally, we study affine classifiers as a tool for estimation and testing, with the key technical tool being a connection to the energy distance. In particular, we propose a density estimation routine based on minimizing the generalized energy distance, targeting smooth densities and Gaussian mixtures. We interpret our results in terms of half-space separability over these classes, and derive analogous results for discrete distributions. As a consequence we deduce that any two discrete distributions are well-separated by a half-space, provided their support is embedded as a packing of a high-dimensional unit ball. We also scrutinize two recent applications of the energy distance in the two-sample testing literature.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼