RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      자율차량 안정성을 위한 도로 거칠기 기반 제동압력 계산 시스템

      한글로보기

      https://www.riss.kr/link?id=A107115122

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      본 논문은 자율차량 안정성을 위한 도로 거칠기 기반 제동압력 계산 시스템을 제안한다. 제동압력 계산 시스템는 차량의 전방 이미지를 랜덤 포레스트의 입력에 맞게 가공하는 이미지 정규화 모듈, 기상정보와 이미지 정규화 모듈에서 정규화된 차량 전방 이미지를 입력으로 사용하여 차량이 주행 중인 도로의 거칠기를 구별하는 랜덤 포레스트 기반 도로 거칠기 분류 모듈과 도로 거칠기에 따라 차량에 적용되는 마찰 계수를 수정하고, 전방 차량에 따라 최적 주행을 유지하는 브레이킹 강도를 결정하는 차량 브레이크 압력 제어 모듈로 구성된다. 본 논문은 제동압력 계산 시스템의 효율성을 검증하기 위해 제동압력 계산 시스템에 사용되는 랜덤 포레스트 모델을 중심으로 실험이 진행되었다. 실험 결과, 랜덤 포레스트 모델의 정확도는 SVM보다 약 2% 높았고, 정확한 랜덤 포레스트 모델 구성을 위해 7개의 특징이 중복 허용 임의 추출되어야 한다는 결론이 도출되었다. 따라서 제동압력 계산 시스템은 차량이 제동해야 하는 상황에서 정확성 모두를 만족할 수 있다.
      번역하기

      본 논문은 자율차량 안정성을 위한 도로 거칠기 기반 제동압력 계산 시스템을 제안한다. 제동압력 계산 시스템는 차량의 전방 이미지를 랜덤 포레스트의 입력에 맞게 가공하는 이미지 정규...

      본 논문은 자율차량 안정성을 위한 도로 거칠기 기반 제동압력 계산 시스템을 제안한다. 제동압력 계산 시스템는 차량의 전방 이미지를 랜덤 포레스트의 입력에 맞게 가공하는 이미지 정규화 모듈, 기상정보와 이미지 정규화 모듈에서 정규화된 차량 전방 이미지를 입력으로 사용하여 차량이 주행 중인 도로의 거칠기를 구별하는 랜덤 포레스트 기반 도로 거칠기 분류 모듈과 도로 거칠기에 따라 차량에 적용되는 마찰 계수를 수정하고, 전방 차량에 따라 최적 주행을 유지하는 브레이킹 강도를 결정하는 차량 브레이크 압력 제어 모듈로 구성된다. 본 논문은 제동압력 계산 시스템의 효율성을 검증하기 위해 제동압력 계산 시스템에 사용되는 랜덤 포레스트 모델을 중심으로 실험이 진행되었다. 실험 결과, 랜덤 포레스트 모델의 정확도는 SVM보다 약 2% 높았고, 정확한 랜덤 포레스트 모델 구성을 위해 7개의 특징이 중복 허용 임의 추출되어야 한다는 결론이 도출되었다. 따라서 제동압력 계산 시스템은 차량이 제동해야 하는 상황에서 정확성 모두를 만족할 수 있다.

      더보기

      다국어 초록 (Multilingual Abstract)

      This paper proposes the road roughness based Braking Pressure Calculation System(BPCS) for an Autonomous Vehicle Stability. The system consists of an image normalization module that processes the front image of a vehicle to fit the input of the random forest, a Random Forest based Road Roughness Classification Module that distinguish the roughness of the road on which the vehicle is travelling by using the weather information and the front image of a vehicle as an input, and a brake pressure control module that modifies a friction coefficient applied to the vehicle according to the road roughness and determines the braking strength to maintain optimal driving according to a vehicle ahead. To verify the efficiency of the BPCS experiment was conducted with a random forest model. The result of the experiment shows that the accuracy of the random forest model was about 2% higher than that of the SVM, and that 7 features should be bagged to make an accurate random forest model. Therefore, the BPCS satisfies both real-time and accuracy in situations where the vehicle needs to brake.
      번역하기

      This paper proposes the road roughness based Braking Pressure Calculation System(BPCS) for an Autonomous Vehicle Stability. The system consists of an image normalization module that processes the front image of a vehicle to fit the input of the random...

      This paper proposes the road roughness based Braking Pressure Calculation System(BPCS) for an Autonomous Vehicle Stability. The system consists of an image normalization module that processes the front image of a vehicle to fit the input of the random forest, a Random Forest based Road Roughness Classification Module that distinguish the roughness of the road on which the vehicle is travelling by using the weather information and the front image of a vehicle as an input, and a brake pressure control module that modifies a friction coefficient applied to the vehicle according to the road roughness and determines the braking strength to maintain optimal driving according to a vehicle ahead. To verify the efficiency of the BPCS experiment was conducted with a random forest model. The result of the experiment shows that the accuracy of the random forest model was about 2% higher than that of the SVM, and that 7 features should be bagged to make an accurate random forest model. Therefore, the BPCS satisfies both real-time and accuracy in situations where the vehicle needs to brake.

      더보기

      목차 (Table of Contents)

      • 요약
      • Abstract
      • 1. 서론
      • 2. 관련 연구
      • 3. 본론
      • 요약
      • Abstract
      • 1. 서론
      • 2. 관련 연구
      • 3. 본론
      • 4. 실험
      • 5. 결론
      • REFERENCES
      더보기

      참고문헌 (Reference)

      1 최찬용, "차량가속도데이터를 이용한 머신러닝 기반의 궤도품질지수(TQI) 예측" 한국지반신소재학회 19 (19): 45-53, 2020

      2 허두영, "저노출 카메라와 웨이블릿 기반 랜덤 포레스트를 이용한 야간 자동차 전조등 및 후미등 인식" 한국방송∙미디어공학회 22 (22): 282-294, 2017

      3 김영주, "자율주행 차 사고, 뒤따르던 일반 차와 충돌 많았다"

      4 Hyun-cheol Yoon, "Transport ation vehicle active safety warning systems developed algorithms" 734-735, 2014

      5 Lynn B. Fricke, "Traffic Accident Reconstructi on"

      6 Lee, Seung-Hyun, "Hypothesis Generation for Vehicle Detection by Combining Shadow and Edge" 316-319, 2016

      7 Jongcherl Park, "Cut-in Intension Inference based on Human Dri ving Data Analysis using Random Forest Met hod" 1703-1708, 2018

      8 Nguyen Manh Cuong, "Automat ic Detection of ROI for Vehicle Positioning" 164-165, 2016

      9 Kwangseub Kim, "A Study on Drowsy Drivi ng Behavior Detection Based on Driving Inf ormation" 702-705, 2015

      1 최찬용, "차량가속도데이터를 이용한 머신러닝 기반의 궤도품질지수(TQI) 예측" 한국지반신소재학회 19 (19): 45-53, 2020

      2 허두영, "저노출 카메라와 웨이블릿 기반 랜덤 포레스트를 이용한 야간 자동차 전조등 및 후미등 인식" 한국방송∙미디어공학회 22 (22): 282-294, 2017

      3 김영주, "자율주행 차 사고, 뒤따르던 일반 차와 충돌 많았다"

      4 Hyun-cheol Yoon, "Transport ation vehicle active safety warning systems developed algorithms" 734-735, 2014

      5 Lynn B. Fricke, "Traffic Accident Reconstructi on"

      6 Lee, Seung-Hyun, "Hypothesis Generation for Vehicle Detection by Combining Shadow and Edge" 316-319, 2016

      7 Jongcherl Park, "Cut-in Intension Inference based on Human Dri ving Data Analysis using Random Forest Met hod" 1703-1708, 2018

      8 Nguyen Manh Cuong, "Automat ic Detection of ROI for Vehicle Positioning" 164-165, 2016

      9 Kwangseub Kim, "A Study on Drowsy Drivi ng Behavior Detection Based on Driving Inf ormation" 702-705, 2015

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2016-01-01 평가 등재후보학술지 유지 (계속평가) KCI등재후보
      2014-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.32 0.32 0
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0 0 0 0.1
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼