본 연구는 GO (graphene oxide)를 활용한 기체 분리막 연구를 위해 기체투과도가 우수한 PTMSP [poly(1-trimethylsilyl- 1-propyne)]에 GO를 첨가하여 PTMSP-GO 고분자 복합막을 제조하고, N2, CH4, CO2에 대한 투과...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A105312741
2018
Korean
PTMSP ; GO ; permeability ; selectivity
KCI등재
학술저널
105-112(8쪽)
0
0
상세조회0
다운로드국문 초록 (Abstract)
본 연구는 GO (graphene oxide)를 활용한 기체 분리막 연구를 위해 기체투과도가 우수한 PTMSP [poly(1-trimethylsilyl- 1-propyne)]에 GO를 첨가하여 PTMSP-GO 고분자 복합막을 제조하고, N2, CH4, CO2에 대한 투과...
본 연구는 GO (graphene oxide)를 활용한 기체 분리막 연구를 위해 기체투과도가 우수한 PTMSP [poly(1-trimethylsilyl- 1-propyne)]에 GO를 첨가하여 PTMSP-GO 고분자 복합막을 제조하고, N2, CH4, CO2에 대한 투과특성을 연구하였다. PTMSP-GO 복합막의 기체투과는 N2 < CH4 < CO2 순으로 높은 기체투과도 값을 가졌다. N2, CH4, CO2의 기체투과 경향은 GO 함량 0~10 wt% 범위에서 함량이 증감함에 따라 기체투과도가 감소하다가 10~30 wt% 범위에서 증가하는 현상을 보였다. 적은 GO 함량범위에서는 복합막 내에서 GO가 barrier로 작용하여 확산성 감소로 기체투과도가 감소하였고, 일정 함량범 위 이상에서는 계면에 생기는 void로 인해 기체투과도가 증가하였다. 그리고 CO2는 GO의 -COOH에 친화성을 가지고 있어 선택도(CO2/N2)와 선택도(CO2/CH4)는 GO 함량이 증가하면서 점차 증가하는데 선택도(CO2/N2)는 PTMSP-GO 10 wt%에서 10.6로 가장 높은 선택도를 보였고, 선택도(CO2/CH4)는 PTMSP-GO 20 wt%에서 3.4로 가장 높은 선택도를 보였다. 그러나 일정 함량 이상에서 선택도(CO2/N2)와 선택도(CO2/CH4) 모두 감소하였는데 GO 함량이 많아지면서 GO 충진물 간의 응집현상이 심해지고, GO 응집물로 인하여 CO2에 대한 용해도 효과가 낮아져 선택도가 감소되었다. PTMSP-GO 20 wt% 복합막은 PTMSP 단일막보다 증가된 CO2 투과도와 선택도(CO2/CH4)를 보이면서 기체투과 특성이 향상되었다.
다국어 초록 (Multilingual Abstract)
In this study, PTMSP-GO composite membranes were prepared by the addition of GO (graphene oxide) into PTMSP [poly (1-trimethylsilyl-1-propyne)] having high gas permeability, to study of gaseous membrane using GO. Gas permeation properties for N2, CH4,...
In this study, PTMSP-GO composite membranes were prepared by the addition of GO (graphene oxide) into PTMSP [poly (1-trimethylsilyl-1-propyne)] having high gas permeability, to study of gaseous membrane using GO. Gas permeation properties for N2, CH4, CO2 were investigated by increasing the amount of GO in the PTMSP. PTMSP-GO composite membranes had higher gas permeability in the order of N2 < CH4 < CO2. The gas permeation tendency of N2, CH4, and CO2 increased as the content of GO increased from 0 to 10 wt%, but the gas permeability decreased as increased from 10 to 30 wt%. In the range of low GO contents, the gas permeability decreased due to the decrease of diffusivity because GO acts as a barrier in the composite membrane, and the gas permeability increased due to the void at the interface above the content range. And CO2 has an affinity with -COOH of GO, the selectivity (CO2/N2) and the selectivity (CO2/CH4) gradually increase with increasing GO content. And the selectivity(CO2/N2) showed the highest selectivity at 10.6 for PTMSP-GO 10 wt% and the selectivity (CO2/CH4) showed the highest selectivity at 3.4 for PTMSP-GO 20 wt%. However, above a certain amount of GO, selectivity (CO2/N2) and selectivity (CO2/CH4) decreased because the coagulation phenomenon between GO was increased and the solubility effect of CO2 decreased. The PTMSP-GO 20 wt% composite membrane exhibited enhanced gas permeation characteristics with increased CO2 permeability and selectivity (CO2/CH4) over PTMSP membrane.
목차 (Table of Contents)
참고문헌 (Reference)
1 L. M. Robeson, "The upper bound revisited" 320 : 390-, 2008
2 T. C. Merkel, "Sorption and transport of hydrocarbon and perfluorocarbon gases in poly(1-trimethylsilyl-1-propyne)" 38 : 273-, 2000
3 J. Shen, "Size effects of graphene oxide on mixed matrix membranes for
4 K. D. Sitter, "Silica filled poly(1-trimethylsily-1-propyne) nanocomposite membranes: Relation between the transport of gases and structural characteristics" 278 : 83-, 2006
5 H. W. Kim, "Selective gas transport through few-layered graphen and graphene oxide membranes" 342 : 91-, 2013
6 J. Ma, "Recent developments of graphene oxide-based membranes: A review" 7 : 52-, 2017
7 Y. Shen, "Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic filler (fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation" 192 : 201-, 2012
8 G. Srinivas, "Porous graphene oxide frameworks: synthesis and gas sorption properties" 21 : 11323-, 2011
9 R. D. Noble, "Perspectives on mixed matrix membranes" 378 : 393-, 2011
10 F. H. Akhtar, "Pebax 1657/graphene oxide composite membranes for improved water vapor separation" 525 : 187-, 2017
1 L. M. Robeson, "The upper bound revisited" 320 : 390-, 2008
2 T. C. Merkel, "Sorption and transport of hydrocarbon and perfluorocarbon gases in poly(1-trimethylsilyl-1-propyne)" 38 : 273-, 2000
3 J. Shen, "Size effects of graphene oxide on mixed matrix membranes for
4 K. D. Sitter, "Silica filled poly(1-trimethylsily-1-propyne) nanocomposite membranes: Relation between the transport of gases and structural characteristics" 278 : 83-, 2006
5 H. W. Kim, "Selective gas transport through few-layered graphen and graphene oxide membranes" 342 : 91-, 2013
6 J. Ma, "Recent developments of graphene oxide-based membranes: A review" 7 : 52-, 2017
7 Y. Shen, "Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic filler (fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation" 192 : 201-, 2012
8 G. Srinivas, "Porous graphene oxide frameworks: synthesis and gas sorption properties" 21 : 11323-, 2011
9 R. D. Noble, "Perspectives on mixed matrix membranes" 378 : 393-, 2011
10 F. H. Akhtar, "Pebax 1657/graphene oxide composite membranes for improved water vapor separation" 525 : 187-, 2017
11 이슬기, "PTMSP-ZIF 복합막의 기체투과 특성" 한국공업화학회 26 (26): 413-420, 2015
12 D. Q. Vu, "Mixed matrix membranes using carbon molecular sieves. I. Preparation and experimental results" 211 : 311-, 2003
13 R. S. Murali, "Mixed matrix membranes of pebax-1657 loaded with 4A zeolite for gaseous separations" 129 : 1-, 2014
14 S. R. Reijerkerk, "Highly hydrophilic, rubbery membranes for
15 H. D. Huang, "High barrier graphene oxide nanosheet/poly(vinyl alcohol) nanocomposite films" 409-410 : 156-, 2012
16 Y. Cui, "Gas barrier performance of graphene/polymer nanocomposites" 98 : 313-, 2016
17 H. Sijbesma, "Flue gas dehydration using polymer membranes" 313 : 263-, 2008
18 G. Shi, "Facile fabrication of graphene membranes with readily tunable structures" 7 : 13745-, 2015
19 K. K. Sadasivuni, "Evolution from graphite to graphene elastomer composites" 39 : 749-, 2014
20 L. Ge, "Enhanced gas permeability by fabricating functionalized multi-walled carbon nanotubes and polyethersulfone nanocomposite membrane" 78 : 76-, 2011
21 D. Zhao, "Effect of graphene oxide on the behavior of poly(amide-6-b-ethylene oxide)/graphen oxide mixed-matrix membrane in the permeation process" 132 : 42624-, 2015
22 S. Morimune, "Ecological approach to graphene oxide reinforced poly (methyl methacrylate) nanocomposites" 4 : 3596-, 2012
23 D. R. Paul, "Creating new types of carbon-based membranes" 335 : 413-, 2012
24 남상용, "Chitosan/Clay 나노복합재료 필름의 제조와 기체투과 특성" 한국막학회 15 (15): 247-254, 2005
25 A. Achari, "Casting molecular channels through domain formation: high performance graphene oxide membranes for
26 T. Li, "Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers" 425-426 : 235-, 2013
금속-유기 골격체를 이용한 CO2/CH4 분리: 플렉서블 효과와 강한 흡착 사이트 비교 연구
PVDF 중공사 분리막을 이용한 MD 모듈 구조 및 운전 조건에 따른 플럭스 영향 평가
PBEM-PMMA-POEM 터폴리머 분리막의 합성, 분석 및 기체 분리 성능
학술지 이력
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2026 | 평가예정 | 재인증평가 신청대상 (재인증) | |
2020-01-01 | 평가 | 등재학술지 유지 (재인증) | |
2017-01-01 | 평가 | 등재학술지 유지 (계속평가) | |
2013-01-01 | 평가 | 등재학술지 유지 (계속평가) | |
2010-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2008-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2005-01-01 | 평가 | 등재학술지 선정 (등재후보2차) | |
2004-01-01 | 평가 | 등재후보 1차 PASS (등재후보1차) | |
2002-07-01 | 평가 | 등재후보학술지 선정 (신규평가) |
학술지 인용정보
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 0.53 | 0.53 | 0.5 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
0.49 | 0.47 | 0.318 | 0.41 |