RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS SCIE

      Synthesis of high-quality monolayer graphene by low-power plasma

      한글로보기

      https://www.riss.kr/link?id=A106023809

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The growth of high-quality graphene on copper substrates has been intensively investigated using chemical vapor deposition (CVD). It, however, has been considered that the growth mechanism is different when graphene is synthesized using a plasma CVD. ...

      The growth of high-quality graphene on copper substrates has been intensively investigated using chemical vapor deposition (CVD). It, however, has been considered that the growth mechanism is different when graphene is synthesized using a plasma CVD. In this study, we demonstrate a dual role of hydrogen for the graphene growth on copper using an inductively coupled plasma (ICP) CVD. Hydrogen activates surface-bound carbon for the growth of high-quality monolayer graphene. In contrast, the role of an etchant is to manipulate the distribution of the graphene grains, which significantly depends on the plasma power. Atomic-resolution transmission electron microscopy study enables the mapping of graphene grains, which uncovers the distribution of grains and the number of graphene layers depending on the plasma power. In addition, the variation of electronic properties of the synthesized graphene relies on the plasma power.

      더보기

      참고문헌 (Reference)

      1 A. Reina, "few-layer graphene films on arbitrary substrates by chemical vapor deposition" 9 : 30-35, 2009

      2 C. Berger, "Ultrathin epitaxial graphite : 2D electron gas properties and a route toward graphene-based nanoelectronics" 108 : 19912-19916, 2004

      3 K. S. Novoselov, "Two-dimensional gas of massless Dirac fermions in graphene" 438 : 197-200, 2005

      4 X. S. Li, "Transfer of large-area graphene films for high-performance transparent conductive electrodes" 9 : 4359-4363, 2009

      5 A. A. Balandin, "Thermal properties of graphene and nanostructured carbon materials" 10 : 569-581, 2011

      6 A. K. Geim, "The rise of graphene" 6 : 183-191, 2007

      7 J.H. Kim, "The hide-and-seek of grain boundaries from moire pattern fringe of two-dimensional graphene" 5 : 2015

      8 A. H. Castro Neto, "The electronic properties of graphene" 81 : 109-162, 2009

      9 D. C. Wei, "Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties" 9 : 1752-1758, 2009

      10 K. Davami, "Synthesis and characterization of carbon nanowalls on different substrates by radio frequency plasma enhanced chemical vapor deposition" 72 : 372-380, 2014

      1 A. Reina, "few-layer graphene films on arbitrary substrates by chemical vapor deposition" 9 : 30-35, 2009

      2 C. Berger, "Ultrathin epitaxial graphite : 2D electron gas properties and a route toward graphene-based nanoelectronics" 108 : 19912-19916, 2004

      3 K. S. Novoselov, "Two-dimensional gas of massless Dirac fermions in graphene" 438 : 197-200, 2005

      4 X. S. Li, "Transfer of large-area graphene films for high-performance transparent conductive electrodes" 9 : 4359-4363, 2009

      5 A. A. Balandin, "Thermal properties of graphene and nanostructured carbon materials" 10 : 569-581, 2011

      6 A. K. Geim, "The rise of graphene" 6 : 183-191, 2007

      7 J.H. Kim, "The hide-and-seek of grain boundaries from moire pattern fringe of two-dimensional graphene" 5 : 2015

      8 A. H. Castro Neto, "The electronic properties of graphene" 81 : 109-162, 2009

      9 D. C. Wei, "Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties" 9 : 1752-1758, 2009

      10 K. Davami, "Synthesis and characterization of carbon nanowalls on different substrates by radio frequency plasma enhanced chemical vapor deposition" 72 : 372-380, 2014

      11 A. A. Balandin, "Superior thermal conductivity of single-layer graphene" 8 : 902-907, 2008

      12 D.A. Boyd, "Single-step deposition of high-mobility graphene at reduced temperatures" 6 : 2015

      13 I. Vlassiouk, "Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene" 5 : 6069-6076, 2011

      14 Y. M. Li, "Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method" 4 : 317-321, 2004

      15 Z. Bo, "Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets" 5 : 5180-5204, 2013

      16 N. Woehrl, "Plasma-enhanced chemical vapor deposition of graphene on copper substrates" 4 : 2014

      17 D. B. Hash, "Model based comparison of thermal and plasma chemical vapor deposition of carbon nanotubes" 93 : 750-752, 2003

      18 Y. S. Kim, "Methane as an effective hydrogen source for single-layer graphene synthesis on Cu foil by plasma enhanced chemical vapor deposition" 5 : 1221-1226, 2013

      19 L. V. Nang, "Low-temperature synthesis of graphene on Fe2O3 using inductively coupled plasma chemical vapor deposition" 92 : 437-439, 2013

      20 L. X. Cheng, "Low temperature synthesis of graphite on Ni films using inductively coupled plasma enhanced CVD" 3 : 5192-5198, 2015

      21 V. P. Pham, "Low damage predoping on CVD graphene/Cu using a chlorine inductively coupled plasma" 95 : 664-671, 2015

      22 K. S. Kim, "Large-scale pattern growth of graphene films for stretchable transparent electrodes" 457 : 706-710, 2009

      23 L.B. Gao, "Heteroepitaxial growth of wafer scale highly oriented graphene using inductively coupled plasma chemical vapor deposition" 3 : 2016

      24 T. Terasawa, "Growth of graphene on Cu by plasma enhanced chemical vapor deposition" 50 : 869-874, 2012

      25 S. Stankovich, "Graphene-based composite materials" 442 : 282-286, 2006

      26 F. Schwierz, "Graphene transistors" 5 : 487-496, 2010

      27 R. K. Joshi, "Graphene films and ribbons for sensing of O-2, and 100 ppm of CO and NO2 in practical conditions" 114 : 6610-6613, 2010

      28 S.S. Sabri, "Graphene field effect transistors with parylene gate dielectric" 95 : 2009

      29 R. R. Nair, "Fine structure constant defines visual transparency of graphene" 320 : 1308-1308, 2008

      30 Y. B. Zhang, "Experimental observation of the quantum Hall effect and Berry's phase in graphene" 438 : 201-204, 2005

      31 X. S. Li, "Evolution of graphene growth on Ni and Cu by carbon isotope labeling" 9 : 4268-4272, 2009

      32 C. Berger, "Electronic confinement and coherence in patterned epitaxial graphene" 312 : 1191-1196, 2006

      33 K. S. Novoselov, "Electric field effect in atomically thin carbon films" 306 : 666-669, 2004

      34 D. C. Wei, "Critical crystal growth of graphene on dielectric substrates at low temperature for electronic devices" 52 : 14121-14126, 2013

      35 L.V. Nang, "Controllable synthesis of high-quality graphene using inductively-coupled plasma chemical vapor deposition" 159 : 2012

      36 W. Zhu, "Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene" 80 : 2009

      37 S. Vizireanu, "Carbon nanowalls growth by radiofrequency plasma-beam-enhanced chemical vapor deposition" 5 : 263-268, 2008

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2008-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2007-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.8 0.18 1.17
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.92 0.77 0.297 0.1
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼