<P>In this study, we successfully developed a novel nanocomposite comprising hexagonal nickel oxide nanosheets (HNONS) and carboxyl-terminated reduced graphene oxide (Tr-rGO) using a hydrothermal process followed by calcinations for the detectio...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107453261
2018
-
SCI,SCIE,SCOPUS
학술저널
840-847(8쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
<P>In this study, we successfully developed a novel nanocomposite comprising hexagonal nickel oxide nanosheets (HNONS) and carboxyl-terminated reduced graphene oxide (Tr-rGO) using a hydrothermal process followed by calcinations for the detectio...
<P>In this study, we successfully developed a novel nanocomposite comprising hexagonal nickel oxide nanosheets (HNONS) and carboxyl-terminated reduced graphene oxide (Tr-rGO) using a hydrothermal process followed by calcinations for the detection of H<SUB>2</SUB>O<SUB>2</SUB> and ascorbic acid. The surface morphology and structure of HNONS@Tr-rGO were characterized using field-emission scanning electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. The electro catalytic activities of HNONS@Tr-rGO toward H<SUB>2</SUB>O<SUB>2</SUB> and ascorbic acid were investigated using cyclic voltammetry, amperometry, and electrochemical impedance spectroscopy. Under optimized conditions, the HNONS@Tr-rGO modified electrode exhibited a high sensitivity of 177.83 μAmM<SUP>−1</SUP>cm<SUP>−2</SUP>, wide linear range from 0.25 μM to 13.1 mM, and low detection limit of 0.25 μM (S/N = 3) as a non-enzymatic ascorbic acid sensor. Whereas, for H<SUB>2</SUB>O<SUB>2,</SUB> the sensor showed a high sensitivity of 222.16 μAmM<SUP>−1</SUP>cm<SUP>−2</SUP>, wide linear range from 0.3 μM to 10.7 mM, and low detection limit of 0.3 μM (S/N = 3). The feasibility of the developed highly sensitive, selective, and reproducible H<SUB>2</SUB>O<SUB>2</SUB> and ascorbic acid sensors was investigated in human serum. The experimental observations demonstrated that the HNONS@Tr-rGO nanocomposite is highly promising for the development of electrochemical sensors to detect biomolecules.</P>