RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      A comprehensive parametric study for solid-state lithium-ion battery through finite element simulation

      한글로보기

      https://www.riss.kr/link?id=A107892458

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Solid-state lithium-ion batteries (SSB) have been regarded over recent years as a promising candidate for next-generationenergy storage due to their increased energy density and safety compared to conventional lithium-ion batteries. However,some inter...

      Solid-state lithium-ion batteries (SSB) have been regarded over recent years as a promising candidate for next-generationenergy storage due to their increased energy density and safety compared to conventional lithium-ion batteries. However,some internal and design parameter eff ects are yet to be fully comprehended. Since numerical modeling gives the opportunityto explore easily the various parameters and their eff ect on the performance of the cell, herein, we present a numericalmodel to study some parameters to optimize the performance of the SSB. The model considers diff usion of lithium-ion inboth the electrode and electrolyte and electrochemical reactions within the SSB. The model prediction agrees with someexperimental discharge profi les, which therefore validates the model. The model is then used to understand the role of theelectrode and electrolyte thickness and maximum concentration of lithium in the solid phase on the performance of thecell. It was observed that increasing cathode thickness increases the cell capacity, whereas reducing electrolyte thicknessimproves the capacity of the cell. Moreover, a direct proportionality is established between the maximum concentration oflithium and the call capacity. Additionally, the role of transport parameter, diff usivity, on the capacity of the SSB at diff erentdischarging rates is also studied. The understanding garnered from the study will improve the cell electrode design tailoredto the desired applications of the SSB.

      더보기

      참고문헌 (Reference)

      1 Liu, C., "Understanding electrochemical potentials of cathode materials in rechargeable batteries" 19 : 109-, 2016

      2 Santhosha, A. L., "The Indium-Lithium electrode in solid-state Lithium-Ion batteries : phase formation, redox potentials, and interface stability" 2 : 524-, 2019

      3 Phillip, N. D., "Structural degradation of high voltage lithium nickel manganese cobalt oxide(NMC)cathodes in solid-state batteries and implications for next generation energy storage" 3 : 1768-, 2020

      4 Zhao, W., "Solid-state electrolytes for lithium-ion batteries : fundamentals, challenges and perspectives" 2 : 574-, 2019

      5 Tian, H. -K., "Simulation of the eff ect of contact area loss in all-solid-state Li-Ion batteries" 164 : E3512-, 2017

      6 Zheng, F., "Review on solid electrolytes for all-solid-state lithium-ion batteries" 389 : 198-, 2018

      7 Yu, C., "Revealing the relation between the structure, Li-ion conductivity and solid-state battery performance of the argyrodite Li6PS5Br solid electrolyte" 5 : 21178-, 2017

      8 Wu, J., "Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries" 14 : 12-, 2021

      9 Akitoshi Hayashi, "Recent Development of Bulk-Type Solid-State Rechargeable Lithium Batteries with Sulfide Glass-ceramic Electrolytes" 대한금속·재료학회 8 (8): 199-207, 2012

      10 Kim, K. S., "Rational design of a composite electrode to realize a high-performance all-solid-state battery" 12 : 2637-, 2019

      1 Liu, C., "Understanding electrochemical potentials of cathode materials in rechargeable batteries" 19 : 109-, 2016

      2 Santhosha, A. L., "The Indium-Lithium electrode in solid-state Lithium-Ion batteries : phase formation, redox potentials, and interface stability" 2 : 524-, 2019

      3 Phillip, N. D., "Structural degradation of high voltage lithium nickel manganese cobalt oxide(NMC)cathodes in solid-state batteries and implications for next generation energy storage" 3 : 1768-, 2020

      4 Zhao, W., "Solid-state electrolytes for lithium-ion batteries : fundamentals, challenges and perspectives" 2 : 574-, 2019

      5 Tian, H. -K., "Simulation of the eff ect of contact area loss in all-solid-state Li-Ion batteries" 164 : E3512-, 2017

      6 Zheng, F., "Review on solid electrolytes for all-solid-state lithium-ion batteries" 389 : 198-, 2018

      7 Yu, C., "Revealing the relation between the structure, Li-ion conductivity and solid-state battery performance of the argyrodite Li6PS5Br solid electrolyte" 5 : 21178-, 2017

      8 Wu, J., "Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries" 14 : 12-, 2021

      9 Akitoshi Hayashi, "Recent Development of Bulk-Type Solid-State Rechargeable Lithium Batteries with Sulfide Glass-ceramic Electrolytes" 대한금속·재료학회 8 (8): 199-207, 2012

      10 Kim, K. S., "Rational design of a composite electrode to realize a high-performance all-solid-state battery" 12 : 2637-, 2019

      11 Tokoharu Yamamoto, "Preparation of Li7P2S8I Solid Electrolyte and Its Application in All-Solid-State Lithium-Ion Batteries with Graphite Anode" 대한금속·재료학회 15 (15): 409-414, 2019

      12 Junghoon Kim, "Performance Optimization of All-Solid-State Lithium Ion Batteries Using a Li2S-P2S5 Solid Electrolyte and LiCoO2 Cathode" 대한금속·재료학회 8 (8): 209-213, 2012

      13 Jiang, Y., "Origins of capacity and voltage fading of LiCoO2 upon high voltage cycling" 7 : 20824-, 2019

      14 Kim, Y., "On state estimation of all solid-state batteries" 317 : 663-, 2019

      15 Cho, H. H., "Numerical and experimental investigation of(de)lithiationinduced strains in bicontinuous silicon-coated nickel inverse opal anodes" 107 : 289-, 2016

      16 Guo, H. L., "Modifi cation of LiCoO2 through rough coating with lithium lanthanum zirconium tantalum oxide for high-voltage performance in lithium ion batteries" 25 : 105-, 2021

      17 Cho, H. H., "Modeling of stresses and strains during(De)lithiation of Ni3Sn2-coated nickel inverseOpal anodes" 9 : 15433-, 2017

      18 Kazemi, N., "Modeling of all-solid-state thinfi lm Li-ion batteries : accuracy improvement" 334 : 111-, 2019

      19 Danilov, D., "Modeling All-SolidState Li-Ion Batteries" 158 : A215-, 2011

      20 Chadha, T. S., "Model based analysis of one-dimensional oriented lithium-ion battery electrodes" 164 : E3114-, 2017

      21 Dahye Park, "Microstructure Design of Carbon-Coated Nb2O5–Si Composites as Reversible Li Storage Materials" 대한금속·재료학회 16 (16): 376-384, 2020

      22 Choi, S. J., "LiI-Doped sulfi de solid electrolyte : enabling a highcapacity slurry-cast electrode by low-temperature post-sintering for practical All-Solid-State Lithium batteries" 10 : 31404-, 2018

      23 Armand, M., "Issues and challenges facing rechargeable lithium batteries" 414 : 359-, 2001

      24 Liu, Y., "Interface equilibrium modeling of all-solid-state lithium-ion thin fi lm batteries" 454 : 227892-, 2020

      25 Park, H., "Integrated porous cobalt oxide/cobalt anode with micro-and nano-pores for lithium ion battery" 525 : 146592-, 2020

      26 Bates, A., "Int Modeling and simulation of 2D lithium-ion solid state battery" 39 : 1505-, 2015

      27 de la Torre-Gamarra, C., "High mass loading additive-free LiFePO4 cathodes with 500 μm thickness for high areal capacity Li-ion batteries" 458 : 228033-, 2020

      28 Talin, A. A., "Fabrication, testing, and simulation of All-Solid-State Three-Dimensional Li-Ion batteries" 8 : 32385-, 2016

      29 Nagao, M., "Fabrication of favorable interface between sulfi de solid electrolyte and Li metal electrode for bulk-type solid-state Li/S battery" 22 : 177-, 2012

      30 Yamauchi, H., "Enhanced rate capabilities in a glassceramic-derived sodium all-solid-state battery" 10 : 1-, 2020

      31 Song, K. Y., "Eff ects of electrode thickness on three-dimensional NiCrAl metal foam cathode for lithium ion battery" 18 : 992-, 2018

      32 Baktash, A., "Diff usion of lithium ions in Lithium-argyrodite solid-state electrolytes" 6 : 1-, 2020

      33 Fabre, S. D., "Charge/discharge simulation of an all-solid-state thin-fi lm battery using a one-dimensional model" 159 : A104-, 2011

      34 Lyu, Y., "An overview on the advances of LiCoO2 cathodes for Lithium-Ion batteries" 11 : 1-, 2021

      35 Kato, Y., "All-Solid-State batteries with thick electrode confi gurations" 9 : 607-, 2018

      36 Howey, D.A., "Advanced battery management systems using fast electrochemical modelling" 2013

      37 Kim, J. G., "A review of lithium and non-lithium based solid state batteries" 282 : 299-, 2015

      38 Park, M., "A review of conduction phenomena in Li-Ion batteries" 195 : 7904-, 2010

      39 Chen, B., "A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery" 210 : 905-, 2016

      40 Ansah, S., "A modeling approach to study the performance of Ni-rich layered oxide cathode for lithium-ion battery" 196 : 110559-, 2021

      41 Becker-Steinberger, K., "A mathematical model for all solid-state lithium-ion batteries" 25 : 285-, 2010

      42 Jeong, K., "A fully coupled diffusional-mechanical fi nite element modeling for tin oxide-coated copper anode system in lithium-ion batteries" 172 : 109343-, 2020

      43 Zhang, W., "A durable and safe solid-state lithium battery with a hybrid electrolyte membrane" 45 : 413-, 2018

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      학술지등록 한글명 : Electronic Materials Letters
      외국어명 : Electronic Materials Letters
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-10-01 평가 등재학술지 선정 (기타) KCI등재
      2011-01-01 평가 등재후보학술지 유지 (기타) KCI등재후보
      2009-12-29 학회명변경 한글명 : 대한금속ㆍ재료학회 -> 대한금속·재료학회 KCI등재후보
      2008-01-01 평가 SCIE 등재 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.68 0.41 1.08
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.89 0.83 0.333 0.06
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼