RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI우수등재 SCOPUS

      Application of 3D Bioprinting Technology for Tissue Regeneration, Drug Evaluation, and Drug Delivery

      한글로보기

      https://www.riss.kr/link?id=A108460200

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      To overcome the limitation of two-dimensional cell culture not being able to mimic the in vivo microenvironment, three-dimensional (3D) bioprinting technology for 3D cell culture has emerged as an innovative culture platform. 3D bioprinting technologies can be divided into five types: inkjet-based bioprinting, extrusion-based bioprinting, stereolithography bioprinting, laser-assisted bioprinting and digital laser processing-based bioprinting technology. The 3D printing strategies achieved through a combination of these technologies can be applied to develop tissue regeneration, drug evaluation and drug delivery systems. In addition, the choice of cells and biomaterials is an important factor in fabricating tissue/organ models. Biomaterials for 3D bioprinting can be divided into natural polymers (alginate, gelatin, collagen, chitosan, agarose, and hyaluronic acid) and synthetic polymers (polylactic acid, polyvinyl alcohol, polycaprolactone, polyethylene oxide and thermoplastic polyurethane). Depending on the goals of 3D bioprinting experiments, biomaterials can be used alone or in combination with various polymers. 3D bioprinting technology has the potential to be applied for personalized medicine, precision medicine and the fabrication of artificial tissue/organs.
      번역하기

      To overcome the limitation of two-dimensional cell culture not being able to mimic the in vivo microenvironment, three-dimensional (3D) bioprinting technology for 3D cell culture has emerged as an innovative culture platform. 3D bioprinting technologi...

      To overcome the limitation of two-dimensional cell culture not being able to mimic the in vivo microenvironment, three-dimensional (3D) bioprinting technology for 3D cell culture has emerged as an innovative culture platform. 3D bioprinting technologies can be divided into five types: inkjet-based bioprinting, extrusion-based bioprinting, stereolithography bioprinting, laser-assisted bioprinting and digital laser processing-based bioprinting technology. The 3D printing strategies achieved through a combination of these technologies can be applied to develop tissue regeneration, drug evaluation and drug delivery systems. In addition, the choice of cells and biomaterials is an important factor in fabricating tissue/organ models. Biomaterials for 3D bioprinting can be divided into natural polymers (alginate, gelatin, collagen, chitosan, agarose, and hyaluronic acid) and synthetic polymers (polylactic acid, polyvinyl alcohol, polycaprolactone, polyethylene oxide and thermoplastic polyurethane). Depending on the goals of 3D bioprinting experiments, biomaterials can be used alone or in combination with various polymers. 3D bioprinting technology has the potential to be applied for personalized medicine, precision medicine and the fabrication of artificial tissue/organs.

      더보기

      참고문헌 (Reference)

      1 O. Habanjar, 22 : 12200-, 2021

      2 H. Herrada-Manchon, 587 : 119687-, 2020

      3 D. V. LaBarbera, 7 : 819-, 2012

      4 C. S. Szot, 32 : 7905-, 2011

      5 L. Hutchinson, 8 : 189-, 2011

      6 S. Breslin, 18 : 240-, 2013

      7 X. Cui, 14 : 20160877-, 2017

      8 K. Duval, 32 : 266-, 2017

      9 W. Kim, 19 : 50-, 2022

      10 M. W. Laschke, 35 : 133-, 2017

      1 O. Habanjar, 22 : 12200-, 2021

      2 H. Herrada-Manchon, 587 : 119687-, 2020

      3 D. V. LaBarbera, 7 : 819-, 2012

      4 C. S. Szot, 32 : 7905-, 2011

      5 L. Hutchinson, 8 : 189-, 2011

      6 S. Breslin, 18 : 240-, 2013

      7 X. Cui, 14 : 20160877-, 2017

      8 K. Duval, 32 : 266-, 2017

      9 W. Kim, 19 : 50-, 2022

      10 M. W. Laschke, 35 : 133-, 2017

      11 H. Shen, 12 : 96-, 2021

      12 J. J. Yu, 12 : 2958-, 2020

      13 S. V. Murphy, 32 : 773-, 2014

      14 E. C. Costa, 34 : 1427-, 2016

      15 Y. Mei, 7 : 418-, 2021

      16 J. Jang, 2 : 1722-, 2016

      17 F. Koch, 20 : e00094-, 2020

      18 K. Muldoon, 13 : 642-, 2022

      19 I. Donderwinkel, 8 : 4451-, 2017

      20 H. G. Yi, 14 : 177-, 2021

      21 B. Grigoryan et al., 364 : 458-, 2019

      22 X. Ma et al., 113 : 2206-, 2016

      23 B. K. Gu, 20 : 12-, 2016

      24 X. Ma, 132 : 235-, 2018

      25 J. M. Lee, 5 : 2856-, 2016

      26 F. Guillemot, 2 : 010201-, 2010

      27 M. Guvendiren, 2 : 1679-, 2016

      28 I. Matai, 226 : 119536-, 2020

      29 K. Y. Lee, 37 : 106-, 2012

      30 Z. U. Arif, 218 : 930-, 2022

      31 J. Dumbleton, 9 : 277-, 2016

      32 E. O. Osidak et al., 30 : 31-, 2019

      33 N. Diamantides, 11 : 045016-, 2019

      34 M. Hospodiuk, 35 : 217-, 2017

      35 D. F. D. Campos, 21 : 740-, 2015

      36 W. K. Lee, 164 : 23-, 2017

      37 L. Schaefer, 339 : 237-, 2010

      38 C. E. Schanté, 85 : 469-, 2011

      39 S. -L. Bee, 58 : 495-, 2018

      40 E. Marin, 8 : 674-, 2014

      41 T. S. Gaaz, 20 : 22833-, 2015

      42 R. Raj, 1225 : 012009-, 2022

      43 T. Xu, 12 : 3010-, 2020

      44 Q. Chen, 9 : 4015-, 2017

      45 F. Zhou et al., 258 : 120287-, 2020

      46 D. Kang, 2022

      47 M. R. Jamalpour et al., 38 : 1316-, 2022

      48 S. Y. Hann, 123 : 263-, 2021

      49 C. Antich, 106 : 114-, 2020

      50 J. Nie, 9 : e1901773-, 2020

      51 S. Hong, 138 : 228-, 2022

      52 A. Gebeyehu et al., 11 : 372-, 2021

      53 K. P. U. N’deh, 10 : 529-, 2020

      54 G. J. Kim, 22 : 6997-, 2021

      55 Y. S. Zhang et al., 110 : 45-, 2016

      56 S. Beg et al., 25 : 1668-, 2020

      57 S. Mohapatra, 3 : 100146-, 2022

      58 S. N. Economidou, 102 : 743-, 2019

      59 C. Farias, 5 : 59-, 2018

      60 J. H. Lee, 8 : 163-, 2022

      61 서갑양, "소프트 리소그라피를 이용한 마이크로유체 채널 내의 단백질 및 세포 패터닝" 한국진공학회 16 (16): 65-73, 2007

      62 김계원 ; 김용준 ; 김한기, "Review of Brush Painting for Cost-efficient Paintable Electronics" 한국진공학회 30 (30): 1-5, 2021

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼