RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Synoptic timescale linkage between midlatitude winter troughs Sahara temperature patterns and northern Congo rainfall: A building block of regional climate variability

      한글로보기

      https://www.riss.kr/link?id=O106358087

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2021년

      • 작성언어

        -

      • Print ISSN

        0899-8418

      • Online ISSN

        1097-0088

      • 등재정보

        SCI;SCIE;SCOPUS

      • 자료형태

        학술저널

      • 수록면

        3153-3173   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 계명대학교 동산도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • ⓒ COPYRIGHT THE BRITISH LIBRARY BOARD: ALL RIGHT RESERVED
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      A coherent synoptic sequence, mostly over North Africa, is identified whereby an upper‐level midlatitude trough (in November–March) excites several days of quasi‐stationary near‐surface warming across the Sahara, leading to rainfall events over northern Congo (NC), and perturbed weather more widely. Ahead of NC rainfall events, composite sequences first identify troughs for several days near Iberia, followed by relatively quick transfer to the Central Mediterranean (CMed). Iberia and CMed daily trough‐strength indices reveal that both lead to warming and NC rainfall. Iberia trough linkages develop through West Africa and take longer to reach NC, while CMed linkages reach NC faster (2–3 days), with impact extent focused mostly south and east of CMed. Building up to the rainfall events, initial warming over the central Sahara migrates southeastward close to NC, ultimately with typical magnitude of about 1–2°C at 10–15°N. Such anomalies are statistically predictive for NC daily rainfall and associated nearby atmospheric features: anomalous low‐level southerly wind and increased moisture; anomalous low‐level westerly wind and vertical easterly shear to 600 hPa; increased mid‐level moisture (600 hPa), which along with low‐level moisture, connects northward into midlatitudes. A secondary route identified by which Iberia troughs can impact NC rainfall is through direct atmospheric teleconnection with precipitation to the west of NC, and subsequent migration of that convection eastward into NC. The eastern side of NC generally shows a small lag on western parts, and links more strongly to CMed troughs. Taken together, the lagged synoptic expression of Iberia and CMed troughs is widespread over several days, including much of North Africa (to equatorial latitudes), southwestern Asia, eastern Africa and the western Indian Ocean. Overall, these results can contribute to situational awareness for weather forecasters across the zones influenced by the troughs, while also providing a framework for climate timescale analyses.
      Sequence associated with strong Iberia troughs (December–March): negative 200‐hPa geopotential height anomalies (Z200) at Day 0 (dotted black); positive 850‐hPa temperature anomalies (T850) at Day +2 (solid red) and Day +6 (dashed red); negative outgoing longwave radiation anomalies (OLR, indicative of enhanced tropical rainfall/convection) at Day +2 (solid green) and Day +6 (dashed green); positive 850‐hPa specific humidity anomalies (Q850) at Day +6 (dashed blue). Black vectors depict low‐level wind anomaly at Day +6 (not to scale).
      번역하기

      A coherent synoptic sequence, mostly over North Africa, is identified whereby an upper‐level midlatitude trough (in November–March) excites several days of quasi‐stationary near‐surface warming across the Sahara, leading to rainfall events ove...

      A coherent synoptic sequence, mostly over North Africa, is identified whereby an upper‐level midlatitude trough (in November–March) excites several days of quasi‐stationary near‐surface warming across the Sahara, leading to rainfall events over northern Congo (NC), and perturbed weather more widely. Ahead of NC rainfall events, composite sequences first identify troughs for several days near Iberia, followed by relatively quick transfer to the Central Mediterranean (CMed). Iberia and CMed daily trough‐strength indices reveal that both lead to warming and NC rainfall. Iberia trough linkages develop through West Africa and take longer to reach NC, while CMed linkages reach NC faster (2–3 days), with impact extent focused mostly south and east of CMed. Building up to the rainfall events, initial warming over the central Sahara migrates southeastward close to NC, ultimately with typical magnitude of about 1–2°C at 10–15°N. Such anomalies are statistically predictive for NC daily rainfall and associated nearby atmospheric features: anomalous low‐level southerly wind and increased moisture; anomalous low‐level westerly wind and vertical easterly shear to 600 hPa; increased mid‐level moisture (600 hPa), which along with low‐level moisture, connects northward into midlatitudes. A secondary route identified by which Iberia troughs can impact NC rainfall is through direct atmospheric teleconnection with precipitation to the west of NC, and subsequent migration of that convection eastward into NC. The eastern side of NC generally shows a small lag on western parts, and links more strongly to CMed troughs. Taken together, the lagged synoptic expression of Iberia and CMed troughs is widespread over several days, including much of North Africa (to equatorial latitudes), southwestern Asia, eastern Africa and the western Indian Ocean. Overall, these results can contribute to situational awareness for weather forecasters across the zones influenced by the troughs, while also providing a framework for climate timescale analyses.
      Sequence associated with strong Iberia troughs (December–March): negative 200‐hPa geopotential height anomalies (Z200) at Day 0 (dotted black); positive 850‐hPa temperature anomalies (T850) at Day +2 (solid red) and Day +6 (dashed red); negative outgoing longwave radiation anomalies (OLR, indicative of enhanced tropical rainfall/convection) at Day +2 (solid green) and Day +6 (dashed green); positive 850‐hPa specific humidity anomalies (Q850) at Day +6 (dashed blue). Black vectors depict low‐level wind anomaly at Day +6 (not to scale).

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼