RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      미생물을 이용한 L-트립토판 유래 방향족 화합물 생산 최근 연구

      한글로보기

      https://www.riss.kr/link?id=A107115770

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      방향족 화합물은 화학, 식품, 고분자, 화장품, 의약 산업 등에 이용되는 중요한 물질로, 현재까지 대부분 화학합성법 또는 식물 추출법으로 만들어진다. 그러나, 화석 연료의 고갈, 지구 온난...

      방향족 화합물은 화학, 식품, 고분자, 화장품, 의약 산업 등에 이용되는 중요한 물질로, 현재까지 대부분 화학합성법 또는 식물 추출법으로 만들어진다. 그러나, 화석 연료의 고갈, 지구 온난화, 환경규제의 강화, 식물자원의 과다한 채취 등의 많은 위협요인에 직면하면서 재생 가능한 생물자원을 이용한 미생물을 이용한 생물공학적 방법으로 방향족 화합물을 생산하는 것은 매우 유망한 대안이다. 대사공학이 합성생물학과 접목되면서, L-트립토판 생합성 경로 유래의 인공 생합성 경로가 재 구축되어 5-히드록시트립토판, 세로토닌, 멜라토닌, 7-염화-L-트립토판, 7-브로모-L-트립토판, 인디고, 인디루빈, 인돌-3-초산, 바이오라세인, 데옥시바이오라세인과 같은 다양한 고부가 화합물을 생산할 수 있게 되었다. 본 총설은 이러한 방향족 화합물의 특성, 용도, 생합성 경로를 요약하였다. 또한 방향족 화합물을 미생물을 이용하여 생산하기 위한 최신의 대사공학 전략과 생산 농도를 올리는데 제기되는 문제들을 극복하기 위한 해결방안 등을 정리하여 보고한다. 시스템 대사 공학에 기반한 균주 개발과 재생 가능한 생물자원을 사용한 배지 및 생물공정의 최적화가 이루어지면 방향족 화합물의 미생물 생산을 위한 상업적으로 실행 가능한 기술 개발을 가능하게 할 것으로 예상된다.

      더보기

      다국어 초록 (Multilingual Abstract)

      Aromatic compounds are widely used in the chemical, food, polymer, cosmetic, and pharmaceutical industries and are produced by mainly chemical synthesis using benzene, toluene, and xylene or by plant extraction methods. Due to many rising threats, inc...

      Aromatic compounds are widely used in the chemical, food, polymer, cosmetic, and pharmaceutical industries and are produced by mainly chemical synthesis using benzene, toluene, and xylene or by plant extraction methods. Due to many rising threats, including the depletion of fossil fuels, global warming, the strengthening of international environmental regulations, and the excessive harvesting of plant resources, the microbial production of aromatic compounds using renewable biomass is regarded as a promising alternative. By integrating metabolic engineering with synthetic and systems biology, artificial biosynthetic pathways have been reconstituted from L-tryptophan biosynthetic pathway in relevant microorganisms, such as Escherichia coli and Corynebacterium glutamicum, enabling the production of a variety of value-added aromatic compounds, such as 5-hydroxytryptophan, serotonin, melatonin, 7-chloro-L-tryptophan, 7-bromo-L-tryptophan, indigo, indirubin, indole-3-acetic acid, violacein, and dexoyviolacein. In this review, we summarize the characteristics, usage, and biosynthetic pathways of these aromatic compounds and highlight the latest metabolic engineering strategies for the microbial production of aromatic compounds and suitable solution strategies to overcome problems in increasing production titers. It is expected that strain development based on systems metabolic engineering and the optimization of media and bioprocesses using renewable biomass will enable the development of commercially viable technologies for the microbial production of many aromatic compounds.

      더보기

      목차 (Table of Contents)

      • 서론
      • 본론
      • 결론
      • References
      • 초록
      • 서론
      • 본론
      • 결론
      • References
      • 초록
      더보기

      참고문헌 (Reference)

      1 이진호, "화이트바이오텍기반 방향족화합물 개발에 관한 연구동향" 한국미생물·생명공학회 37 (37): 306-315, 2009

      2 Koguchi, Y., "TMC-94A, B, C, and D, novel proteasome inhibitors produced by Apiospora montagnei Sacc. TC 1093. Taxonomy, production, isolation, and biological activities" 53 : 105-109, 2000

      3 Rodrigues, A. L., "Systems metabolic engineering of Escherichia coli for production of the antitumor drugs violacein and deoxyviolacein" 20 : 29-41, 2013

      4 Mora-Villalobos, J. A., "Synthetic pathway and processes for effective production of 5-hydroxytryptophan and serotonin from glucose in Escherichia coli" 12 : 3-, 2018

      5 van Pée, K. H., "Specific enzymatic chlorination of tryptophan and tryptophan derivatives" 467 : 603-609, 1999

      6 Zhou, N. Y., "Salicylate 5-hydroxylase from Ralstonia sp. strain U2: a monooxygenase with close relationships to and shared electron transport proteins with naphthalene dioxygenase" 184 : 1547-1555, 2002

      7 강미숙, "Rhodococcus sp. RHA1 유래의 Indole Oxygenase의 클로닝 및 발현" 한국미생물·생명공학회 37 (37): 197-203, 2009

      8 Chen, Y., "Rational design and analysis of an Escherichia coli strain for high-efficiency tryptophan production" 45 : 357-367, 2018

      9 정혜숙, "Protein Engineering of Flavin-containing Monooxygenase from Corynebacterium glutamicum for Improved Production of Indigo and Indirubin" 한국생명과학회 28 (28): 656-662, 2018

      10 Lee, J. H., "Production of amino acids-Genetic and metabolic engineering approaches" 245 : 1575-1587, 2017

      1 이진호, "화이트바이오텍기반 방향족화합물 개발에 관한 연구동향" 한국미생물·생명공학회 37 (37): 306-315, 2009

      2 Koguchi, Y., "TMC-94A, B, C, and D, novel proteasome inhibitors produced by Apiospora montagnei Sacc. TC 1093. Taxonomy, production, isolation, and biological activities" 53 : 105-109, 2000

      3 Rodrigues, A. L., "Systems metabolic engineering of Escherichia coli for production of the antitumor drugs violacein and deoxyviolacein" 20 : 29-41, 2013

      4 Mora-Villalobos, J. A., "Synthetic pathway and processes for effective production of 5-hydroxytryptophan and serotonin from glucose in Escherichia coli" 12 : 3-, 2018

      5 van Pée, K. H., "Specific enzymatic chlorination of tryptophan and tryptophan derivatives" 467 : 603-609, 1999

      6 Zhou, N. Y., "Salicylate 5-hydroxylase from Ralstonia sp. strain U2: a monooxygenase with close relationships to and shared electron transport proteins with naphthalene dioxygenase" 184 : 1547-1555, 2002

      7 강미숙, "Rhodococcus sp. RHA1 유래의 Indole Oxygenase의 클로닝 및 발현" 한국미생물·생명공학회 37 (37): 197-203, 2009

      8 Chen, Y., "Rational design and analysis of an Escherichia coli strain for high-efficiency tryptophan production" 45 : 357-367, 2018

      9 정혜숙, "Protein Engineering of Flavin-containing Monooxygenase from Corynebacterium glutamicum for Improved Production of Indigo and Indirubin" 한국생명과학회 28 (28): 656-662, 2018

      10 Lee, J. H., "Production of amino acids-Genetic and metabolic engineering approaches" 245 : 1575-1587, 2017

      11 김유미, "Production of Indole-3-acetate in Corynebacterium glutamicum by Heterologous Expression of the Indole-3-pyruvate Pathway Genes" 한국미생물·생명공학회 47 (47): 242-249, 2019

      12 Eisenbrand, G., "Molecular mechanisms of indirubin and its derivatives : novel anticancer molecules with their origin in traditional Chinese phytomedicine" 130 : 627-635, 2004

      13 Nishizawa, T., "Molecular analysis of the rebeccamycin L-amino acid oxidase from Lechevalieria aerocolonigenes ATCC 39243" 187 : 2084-2092, 2005

      14 Pawar, S., "Microbial pyrrolnitrin : Natural metabolite with immense practical utility" 9 : 443-, 2019

      15 Wang, H., "Metabolic pathway engineering for high-level production of 5-hydroxytryptophan in Escherichia coli" 48 : 279-287, 2018

      16 Huccetogullari, D., "Metabolic engineering of microorganisms for production of aromatic compounds" 18 : 41-, 2019

      17 Du, J., "Metabolic engineering of Escherichia coli for the production of indirubin from glucose" 267 : 19-28, 2018

      18 Veldmann, K. H., "Metabolic engineering of Corynebacterium glutamicum for the fermentative production of halogenated tryptophan" 291 : 7-16, 2019

      19 Byeon, Y., "Melatonin production in Escherichia coli by dual expression of serotonin N-acetyltransferase and caffeic acid O-methyltransferase" 100 : 6683-6691, 2016

      20 Arnao, M. B., "Melatonin and its relationship to plant hormones" 121 : 195-207, 2018

      21 Spaepen, S., "Indole-3-acetic acid in microbial and microorganism-plant signaling" 31 : 425-448, 2007

      22 Hammer, P. E., "Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin" 63 : 2147-2154, 1997

      23 McKinney, J., "Expression and purification of human tryptophan hydroxylase from Escherichia coli and Pichia pastoris" 33 : 185-194, 2004

      24 Zhou, Y., "Enhanced production of crude violacein from glucose in Escherichia coli by overexpression of rate-limiting key enzyme(s)involved in violacein biosynthesis" 186 : 909-916, 2018

      25 Han, G. H., "Enhanced indirubin production in recombinant Escherichia coli harboring a flavin-containing monooxygenase gene by cysteine supplementation" 164 : 179-187, 2012

      26 Lin, Y., "Engineering bacterial phenylalanine 4-hydroxylase for microbial synthesis of human neurotransmitter precursor 5-hydroxytryptophan" 3 : 497-505, 2014

      27 Sun, H., "Engineering Corynebacterium glutamicum for violacein hyper production" 15 : 148-, 2016

      28 Hsu, T. M., "Employing a biochemical protecting group for a sustainable indigo dyeing strategy" 14 : 256-261, 2018

      29 Kim, J., "Eluciding cysteine-assisted synthesis of indirubin by a flavin-containing monooxygenase" 9 : 9539-9544, 2019

      30 Elisa Friska Romasi, "Development of Indole-3-Acetic Acid-Producing Escherichia coli by Functional Expression of IpdC, AspC, and Iad1" 한국미생물·생명공학회 23 (23): 1726-1736, 2013

      31 Guo, D., "De novo biosynthesis of indole-3-acetic acid in engineered Escherichia coli" 67 : 8186-8190, 2019

      32 Ikeda, M., "Corynebacterium glutamicum" Springer 175-226, 2020

      33 Kubota, T., "Chorismate-dependent transcriptional regulation of quinate/shikimate utilization genes by LysR-type transcriptional regulator QsuR in Corynebacterium glutamicum : carbon flow control at metabolic branch point" 92 : 356-368, 2014

      34 Ameria, S. P. L., "Characterization of a flavin-containing monooxygenase from Corynebacterium glutamicum and its application to production of indigo and indirubin" 37 : 1637-1644, 2015

      35 Du, L., "Central metabolic pathway modification to improve L-tryptophan production in Escherichia coli" 10 : 59-70, 2019

      36 Cao, M., "Building microbial factories for the production of aromatic amino acid pathway derivatives : From commodity chemicals to plant-sourced natural products" 58 : 94-132, 2020

      37 Veldmann, K. H., "Bromination of L-tryptophan in a fermentative process with Corynebacterium glutamicum" 7 : 219-, 2019

      38 Lee, J. H., "Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass" 257 : 211-221, 2017

      39 Spaepen, S., "Auxin and plant-microbe interactions" 3 : a001438-, 2011

      40 Choi, H. S., "A novel flavin-containing monooxygenase from Methylophaga sp. strain SK1 and its indigo synthesis in Escherichia coli" 306 : 930-936, 2003

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-08-03 학술지명변경 외국어명 : Korean Journal of Life Science -> Journal of Life Science KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2003-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2001-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.37 0.37 0.42
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.43 0.43 0.774 0.09
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼