RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      이중 SGRU-DCNN 기반 태양광 발전 예측

      한글로보기

      https://www.riss.kr/link?id=A108692433

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Solar power generation provides significant environmental and economical advantages, in comparison to nuclear and fossil fuel. Although, due to the unpredictable and intermittent patterns in the data, it is difficult to forecast power generation effec...

      Solar power generation provides significant environmental and economical advantages, in comparison to nuclear and fossil fuel. Although, due to the unpredictable and intermittent patterns in the data, it is difficult to forecast power generation effectively. Therefore, in this study, we proposed stacked Gated Recurrent Units (SGRU) and deep Convolutional Neural Networks (DCNN) for power generation forecasting. Initially, data preprocessing strategies are applied such as imputing missing values and data normalization, to convert the raw input data into refined formate. The proposed dual SGRUDCNN is then used to learn temporal pattern via SGRU and spatial pattern via DCNN, followed by a feature fusion layer, where the outputs vectors of both networks are integrated into a single representative feature vector and fed to fully connected layers for final forecasting. Furthermore, the effectiveness of the SGRU-DCNN is evaluated via two benchmarks where the SGRU-DCNN achieved optimal performance among state-of-the-art (SOTA) architectures.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. Introduction
      • 2. THE PROPOSED METHOD
      • 3. Experiment result
      • 3.1. Comparative analysis
      • Abstract
      • 1. Introduction
      • 2. THE PROPOSED METHOD
      • 3. Experiment result
      • 3.1. Comparative analysis
      • 3.2. Comparison with SOTA methods
      • 4. Conclusions
      • Acknowledgment
      • Reference
      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼