RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Dynamic wetting and heat transfer characteristics of a liquid droplet impinging on heated textured surfaces

      한글로보기

      https://www.riss.kr/link?id=A107708686

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P><B>Abstract</B></P> <P>This article reports the dynamic wetting behavior during spreading and receding phases and the heat transfer characteristics for impinging droplets on heated textured surfaces. In particular, th...

      <P><B>Abstract</B></P> <P>This article reports the dynamic wetting behavior during spreading and receding phases and the heat transfer characteristics for impinging droplets on heated textured surfaces. In particular, the present study suggests newly the modified equations of the total thermal energy absorbed by droplet and the cooling effectiveness for textured surfaces with consideration of three different wetting states: non-wetting, partial-wetting and total-wetting states. Captured images by using the high-speed cameras were analyzed to examine the influence of impact Weber number, surface temperature, and texture area fraction. It was found that for the textured surfaces, the maximum contact diameter of impinged droplet decreased owing to decrease in the surface energy. At increased surface temperatures, the maximum contact diameters slightly increased and the maximum recoil diameters decreased because of change in liquid viscosity. For the textured surfaces, the cooling effectiveness increased with the Weber number and its change substantially depended on the wetting state. In case of the total-wetting state, the cooling effectiveness increased with the texture area fraction, because of change in liquid–solid interface area. It shows that the control of wetting state would be important in heat transfer of an impinging droplet on solid surface.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Spreading and receding behaviors were observed for impinging droplets on heated textured surface. </LI> <LI> The effect of texture area fraction, surface temperature, and Weber number were examined. </LI> <LI> In the receding regime, droplets receded faster with the increase in surface temperature. </LI> <LI> A cooling effectiveness model for a textured surface was suggested by considering wetting states. </LI> <LI> The cooling effectiveness decreased with the increase in hydrophobicity. </LI> </UL> </P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼