RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Fabrication and Characterization of a Flexible PVDF Fiber-based Polymer Composite for High-performance Energy Harvesting Devices

      한글로보기

      https://www.riss.kr/link?id=A106319448

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      A flexible polyvinylidene fluoride (PVDF)/polydimethylsiloxane (PDMS) composite prototype with high piezoelectricity and force sensitivity was constructed, and its huge potential for applications such as biomechanical energy harvesting, self-powered h...

      A flexible polyvinylidene fluoride (PVDF)/polydimethylsiloxane (PDMS) composite prototype with high piezoelectricity and force sensitivity was constructed, and its huge potential for applications such as biomechanical energy harvesting, self-powered health mon- itoring system, and pressure sensors was proved. The crystallization, piezoelectric, and electrical properties of the composites were char-acterized using an X-ray diffraction (XRD) experiment and customized experimental setups. The composite can sustain up to 100%strain, which is a huge improvement over monolithic PVDF fibers and other PVDF-based composites in the literature. The Young’s modulus is 1.64 MPa, which is closely matched with the flexibility of the human skin, and shows the possibility for integrating PVDF/PDMS composites into wearable devices and implantable medical devices. The 300 µm thick composite has a 14% volume fractionof PVDF fibers and produces high piezoelectricity with piezoelectric charge constants d31 = 19 pC/N and d33 = 34 pC/N, and piezo-electric voltage constants g31 = 33.9 mV/N and g33 = 61.2 mV/N. Under a 10 Hz actuation, the output voltage was measured at 190 mVpp, which is the largest output signal generated from a PVDF fiber-based prototype.

      더보기

      참고문헌 (Reference)

      1 A. Nazir, "Using the Taguchi method to investigate the effect of different parameters on mean diameter and variation in PA-6 nanofibres produced by needleless electrospinning" 5 (5): 76892-76897, 2015

      2 M. Liu, "Thicknessdependent mechanical properties of polydimethylsiloxane membranes" 19 (19): 035028(1)-035028(4), 2009

      3 N. Shehata, "Static-Aligned Piezoelectric Poly(Vinylidene Fluoride)Electrospun Nanofibers/MWCNT Composite Membrane : Facile Method" 10 (10): 965(1)-965(11), 2018

      4 L. Ruan, "Properties and Applications of the β Phase Poly(vinylidene fluoride)" 10 (10): 228(1)-228(27), 2018

      5 G. Zheng, "Precision deposition of a nanofibre by near-field electrospinning" 43 (43): 415501(1)-415501(6), 2010

      6 A. B. Amar, "Power Approaches for Implantable Medical Devices" 15 (15): 28889-28914, 2015

      7 Z. Liu, "Piezoelectricity of Well-Aligned Electrospun Fiber Composites" 13 (13): 4098-4103, 2013

      8 J. Pu, "Piezoelectric actuation of direct-write electrospun fibers" 164 (164): 131-136, 2010

      9 C. M. Wu, "Piezoelectric Response of Aligned Electrospun Polyvinylidene Fluoride/Carbon Nanotube Nanofibrous Membranes" 8 (8): 420(1)-420, 2018

      10 D. Farrar, "Permanent polarity and piezoelectricity of electrospun alpha-helical poly(alpha-amino acid)fibers" 23 (23): 3954-3968, 2011

      1 A. Nazir, "Using the Taguchi method to investigate the effect of different parameters on mean diameter and variation in PA-6 nanofibres produced by needleless electrospinning" 5 (5): 76892-76897, 2015

      2 M. Liu, "Thicknessdependent mechanical properties of polydimethylsiloxane membranes" 19 (19): 035028(1)-035028(4), 2009

      3 N. Shehata, "Static-Aligned Piezoelectric Poly(Vinylidene Fluoride)Electrospun Nanofibers/MWCNT Composite Membrane : Facile Method" 10 (10): 965(1)-965(11), 2018

      4 L. Ruan, "Properties and Applications of the β Phase Poly(vinylidene fluoride)" 10 (10): 228(1)-228(27), 2018

      5 G. Zheng, "Precision deposition of a nanofibre by near-field electrospinning" 43 (43): 415501(1)-415501(6), 2010

      6 A. B. Amar, "Power Approaches for Implantable Medical Devices" 15 (15): 28889-28914, 2015

      7 Z. Liu, "Piezoelectricity of Well-Aligned Electrospun Fiber Composites" 13 (13): 4098-4103, 2013

      8 J. Pu, "Piezoelectric actuation of direct-write electrospun fibers" 164 (164): 131-136, 2010

      9 C. M. Wu, "Piezoelectric Response of Aligned Electrospun Polyvinylidene Fluoride/Carbon Nanotube Nanofibrous Membranes" 8 (8): 420(1)-420, 2018

      10 D. Farrar, "Permanent polarity and piezoelectricity of electrospun alpha-helical poly(alpha-amino acid)fibers" 23 (23): 3954-3968, 2011

      11 C. M. Wu, "Optimizing parameters for continuous electrospinning of polyacrylonitrile nanofibrous yarn using the Taguchi method" 48 (48): 559-579, 2017

      12 D. Sun, "Near-Field Electrospinning" 6 (6): 839-842, 2006

      13 J. Hu, "Mixed effect of main electrospinning parameters on the β-phase crystallinity of electrospun PVDF nanofibers" 26 (26): 085019(1)-085019(9), 2017

      14 C. T. Pan, "Large-Area Piezoelectric PVDF Fibers Fabricated by Near-Field Electrospinning with Multi-Spinneret Structures" 8 (8): 97(1)-97(16), 2017

      15 P. Kiselev, "Highly aligned electrospun nanofibers by elimination of the whipping motion" 125 (125): 2433-2441, 2012

      16 L. Persano, "High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene)" 4 : 1633(1)-1633(10), 2013

      17 Y. Xin, "Full-fiber piezoelectric sensor by straight PVDF/nanoclay nanofibers" 164 : 136-139, 2016

      18 Y. Liu, "Flexible, Stretchable Sensors for Wearable Health Monitoring : Sensing Mechanisms, Materials, Fabrication Strategies and Features" 18 (18): 645(1)-645(35), 2018

      19 G. Ren, "Flexible Pressure Sensor Based on a Poly(VDF-TrFE)Nanofiber Web" 298 (298): 541-546, 2013

      20 H. Y. Son, "Flexible Fibrous Piezoelectric Sensors on Printed Silver Electrodes" 13 (13): 709-713, 2014

      21 J. Lee, "Fabrication of patterned nanofibrous mats using direct-write electrospinning" 28 (28): 7267-7275, 2012

      22 A. Chinnappan, "Fabrication of MWCNT/Cu nanofibers via electrospinning method and analysis of their electrical conductivity by four-probe method" 43 (43): 721-729, 2018

      23 J. Nunes-Pereira, "Energy harvesting performance of piezoelectric electrospun polymer fibers and polymer/ceramic composites" 196 : 55-62, 2013

      24 T. Lei, "Electrospinning-induced preferred dipole orientation in PVDF fibers" 50 (50): 4342-4347, 2015

      25 D. -N Nguyen, "Electrospinning of well-aligned fiber bundles using an End-point Control Assembly method" 77 : 54-64, 2016

      26 D. -N Nguyen, "Electrospinning of poly(γ-benzyl-α, L-glutamate)microfibers for piezoelectric polymer applications" 135 (135): 46440-, 2018

      27 M. M. L. Arras, "Electrospinning of aligned fibers with adjustable orientation using auxiliary electrodes" 13 (13): 035008(1)-035008(8), 2012

      28 Y. Ding, "Electrohydrodynamically Printer, Flexible Energy Harvester Using In Situ Poled Piezoelectric Nanofibers" 3 (3): 351-358, 2015

      29 P. Martin, "Electroactive phases of poly(vinylidene fluoride) : Determination, processing and applications" 39 (39): 683-706, 2014

      30 L. S. Carnell, "Electric field effects on fiber alignment using an auxiliary electrode during electrospinning" 60 (60): 359-361, 2009

      31 C. Chang, "Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency" 10 (10): 726-731, 2010

      32 R. K. Roy, "Design of experiments using the Taguchi approach" John Wiley & Sons 2001

      33 S. J. Tuck, "Critical variables in the alignment of electrospun PLLA nanofibers" 32 (32): 1779-1784, 2012

      34 S. Debarun, "Characterization of single polyvinylidene fluoride(PVDF)nanofiber for flow sensing applications" 7 (7): 105205(1)-105205(7), 2017

      35 Y. Ishii, "A new electrospinning method to control the number and a diameter of uniaxially aligned polymer fibers" 62 (62): 3370-3372, 2008

      36 F. Dabirian, "A comparative study of jet formation and nanofiber alignment in electrospinning and electrocentrifugal spinning systems" 69 (69): 540-546, 2011

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 계속평가 신청대상 (계속평가)
      2021-12-01 평가 등재후보로 하락 (재인증) KCI등재후보
      2018-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2017-12-01 평가 등재후보로 하락 (계속평가) KCI등재후보
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.22 0.22 0.16
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.15 0.13 0.319 0.07
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼