RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Regulation of aberrant proteasome activity re‐establishes plasticity and long‐term memory in an animal model of Alzheimer's disease

      한글로보기

      https://www.riss.kr/link?id=O112928794

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Reduced retrograde memory performance at the cognitive level and aggregation/deposition of amyloid beta (Aβ) in the brain at the cellular level are some of the hallmarks of Alzheimer's Disease (AD). A molecular system that participates in the removal...

      Reduced retrograde memory performance at the cognitive level and aggregation/deposition of amyloid beta (Aβ) in the brain at the cellular level are some of the hallmarks of Alzheimer's Disease (AD). A molecular system that participates in the removal of proteins with an altered conformation is the Ubiquitin‐Proteasome System (UPS). Impairments of the UPS in wild‐type (WT) mice lead to defective clearance of Aβ and prevent long‐term plasticity of synaptic transmission. Here we show data whereby in contrast to WT mice, the inhibition of proteasome‐mediated protein degradation in an animal model of AD by MG132 or lactacystin restores impaired activity‐dependent synaptic plasticity and its associative interaction, synaptic tagging and capture (STC) in vitro, as well as associative long‐term memory in vivo. This augmentation of synaptic plasticity and memory is mediated by the mTOR pathway and protein synthesis. Our data offer novel insights into the rebalancing of proteins relevant for synaptic plasticity which are regulated by UPS in AD‐like animal models. In addition, the data provide evidence that proteasome inhibitors might be effective in reinstating synaptic plasticity and memory performance in AD, and therefore offer a new potential therapeutic option for AD treatment.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼