RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Theoretical estimation of the apparent rate constants for ozone decomposition in gas and aqueous phases using ab initio calculations

      한글로보기

      https://www.riss.kr/link?id=O112735568

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      An ab initio study, using the coupled cluster calculations (CCSD) method was conducted to investigate the kinetics of the ozone degradation in gas and aqueous phases considering the reaction of ozone with the hydroperoxyl radical. Two potential transi...

      An ab initio study, using the coupled cluster calculations (CCSD) method was conducted to investigate the kinetics of the ozone degradation in gas and aqueous phases considering the reaction of ozone with the hydroperoxyl radical. Two potential transition state paths, oxygen and hydrogen transfer, are studied and compared. It was revealed by the ab initio quantum chemical calculations that the calculated overall rate constant in the gas phase differs by approximately an order of magnitude from measured values. However, the calculated selectivity (branching fraction), which was measured directly with isotope studies of hydrogen atom transfer, is almost exactly equal to the experimental value at 298.15 K. The sensitivity analysis showed that adding the reaction between ozone and hydroperoxyl radical to the kinetic model accelerates the decomposition process by more than four times in the aqueous phase (pH = 7–8.5), and for an order of magnitude change in the rate constant of this reaction, the decomposition half‐life changes by 20–45 %. This result might affect our understanding of atmospheric ozone chemistry.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼