RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      돼지의 빠른 자세 결정과 머리 제거를 위한영상처리 및 딥러닝 기법 = Image Processing and Deep Learning Techniquesfor Fast Pig’s Posture Determining and Head Removal

      한글로보기

      https://www.riss.kr/link?id=A106441912

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The weight of pig is one of the main factors in determining the health and growth state of pigs, their shipment, the breeding environment, and the ration of feed, and thus measuring the pig’s weight is an important issue in productivity perspective. In order to estimate the pig’s weight by using the number of pig’s pixels from images, acquired from a Top-view camera, the posture determining and the head removal from images are necessary to measure the accurate number of pixels. In this research, we propose the fast and accurate method to determine the pig’s posture by using a fast image processing technique, find the head location by using a fast deep learning technique, and remove pig’s head by using light weighted image processing technique. First, we determine the pig’s posture by comparing the length from the center of the pig‘s body to the outline of the pig in the binary image. Then, we train the location of pig’s head, body, and hip in images using YOLO(one of the fast deep learning based object detector), and then we obtain the location of pig’s head and remove an outside area of head by using head location. Finally, we find the boundary of head and body by using Convex-hull, and we remove pig’s head. In the Experiment result, we confirmed that the pig’s posture was determined with an accuracy of 0.98 and a processing speed of 250.00fps, and the pig’s head was removed with an accuracy of 0.96 and a processing speed of 48.97fps.
      번역하기

      The weight of pig is one of the main factors in determining the health and growth state of pigs, their shipment, the breeding environment, and the ration of feed, and thus measuring the pig’s weight is an important issue in productivity perspective....

      The weight of pig is one of the main factors in determining the health and growth state of pigs, their shipment, the breeding environment, and the ration of feed, and thus measuring the pig’s weight is an important issue in productivity perspective. In order to estimate the pig’s weight by using the number of pig’s pixels from images, acquired from a Top-view camera, the posture determining and the head removal from images are necessary to measure the accurate number of pixels. In this research, we propose the fast and accurate method to determine the pig’s posture by using a fast image processing technique, find the head location by using a fast deep learning technique, and remove pig’s head by using light weighted image processing technique. First, we determine the pig’s posture by comparing the length from the center of the pig‘s body to the outline of the pig in the binary image. Then, we train the location of pig’s head, body, and hip in images using YOLO(one of the fast deep learning based object detector), and then we obtain the location of pig’s head and remove an outside area of head by using head location. Finally, we find the boundary of head and body by using Convex-hull, and we remove pig’s head. In the Experiment result, we confirmed that the pig’s posture was determined with an accuracy of 0.98 and a processing speed of 250.00fps, and the pig’s head was removed with an accuracy of 0.96 and a processing speed of 48.97fps.

      더보기

      국문 초록 (Abstract)

      양돈 업계에서 돼지의 무게는 돼지의 건강이나 성장 상태, 출하 여부, 사육 환경, 사료 배급을 결정하는 주요 요인 중 하나이며, 따라서 돼지의 무게를 측정하는 것은 돼지의 생산성 측면에서 중요한 문제이다. Top-view 카메라에서 획득한 영상으로부터 돼지의 픽셀 수를 이용하여 돼지의 무게를 추정하고자 할 때, 정확한 픽셀 수 측정에 영향을 주는 돼지의 자세를 결정할 필요가 있으며, 픽셀 수 측정에 영향을 주는 머리 부분을 제거할 필요가 있다. 본 논문에서는 빠른 영상처리 기법을 이용하여 돼지의 자세를 빠르게 결정하고, 딥러닝 기반의 빠른 객체탐지 기법인 YOLO를 이용하여 돼지 머리 위치를 파악한 후, 경량화된 영상처리 기법을 이용하여 돼지의 머리와 몸통 경계를 획득하고 머리를 제거하는 방법을 제안한다. 즉, 빠른 영상처리 기법으로 이진화된 돼지의 영상 데이터에서 돼지의 몸통 중심점으로부터 돼지의 외곽선까지의 길이를 비교하여 돼지의 자세를 결정한다. 또한, 돼지의 머리 위치를 탐지하기 위하여 YOLO를 이용하여 영상 데이터 내의 돼지의 머리, 몸통, 엉덩이의 위치를 학습시킨 후, 곧은 자세의 돼지 머리 위치를 획득하고 머리 바깥 영역을 제거한다. 마지막으로 Convex-hull을 이용하여 돼지의 머리와 몸통 경계를 추정한 후, 머리를 제거한다. 실험 결과, 0.98의 정확도와 250.00fps의 수행속도로 돼지의 자세를 결정하였으며, 0.96의 정확도와 48.97fps의 수행속도로 돼지의 머리탐지 및 제거가 가능함을 확인하였다.
      번역하기

      양돈 업계에서 돼지의 무게는 돼지의 건강이나 성장 상태, 출하 여부, 사육 환경, 사료 배급을 결정하는 주요 요인 중 하나이며, 따라서 돼지의 무게를 측정하는 것은 돼지의 생산성 측면에...

      양돈 업계에서 돼지의 무게는 돼지의 건강이나 성장 상태, 출하 여부, 사육 환경, 사료 배급을 결정하는 주요 요인 중 하나이며, 따라서 돼지의 무게를 측정하는 것은 돼지의 생산성 측면에서 중요한 문제이다. Top-view 카메라에서 획득한 영상으로부터 돼지의 픽셀 수를 이용하여 돼지의 무게를 추정하고자 할 때, 정확한 픽셀 수 측정에 영향을 주는 돼지의 자세를 결정할 필요가 있으며, 픽셀 수 측정에 영향을 주는 머리 부분을 제거할 필요가 있다. 본 논문에서는 빠른 영상처리 기법을 이용하여 돼지의 자세를 빠르게 결정하고, 딥러닝 기반의 빠른 객체탐지 기법인 YOLO를 이용하여 돼지 머리 위치를 파악한 후, 경량화된 영상처리 기법을 이용하여 돼지의 머리와 몸통 경계를 획득하고 머리를 제거하는 방법을 제안한다. 즉, 빠른 영상처리 기법으로 이진화된 돼지의 영상 데이터에서 돼지의 몸통 중심점으로부터 돼지의 외곽선까지의 길이를 비교하여 돼지의 자세를 결정한다. 또한, 돼지의 머리 위치를 탐지하기 위하여 YOLO를 이용하여 영상 데이터 내의 돼지의 머리, 몸통, 엉덩이의 위치를 학습시킨 후, 곧은 자세의 돼지 머리 위치를 획득하고 머리 바깥 영역을 제거한다. 마지막으로 Convex-hull을 이용하여 돼지의 머리와 몸통 경계를 추정한 후, 머리를 제거한다. 실험 결과, 0.98의 정확도와 250.00fps의 수행속도로 돼지의 자세를 결정하였으며, 0.96의 정확도와 48.97fps의 수행속도로 돼지의 머리탐지 및 제거가 가능함을 확인하였다.

      더보기

      참고문헌 (Reference)

      1 J. Redmon, "YOLO9000: Better, Faster, Stronger" 7263-7271, 2017

      2 M. Kashiha, "Weight Estimation of Pigs Using Top-view Image Processing" 496-503, 2014

      3 Z. Cao, "OpenPose : Realtime Multi-person 2D Pose Estimation Using Part Affinity Fields"

      4 "Open Source Computer Vision: ‘OpenCV’"

      5 A. Pezzuoloa, "On-barn Pig Weight Estimation Based on Body Measurements by a Kinect v1 Depth Camera" 148 : 29-36, 2018

      6 K. He, "Mask R-CNN" 2961-2969, 2017

      7 H. Guo, "LSSA_CAU : An Interactive 3d Point Clouds Analysis Software for Body Measurement of Livestock with Similar Forms of Cows or Pigs" 138 : 60-68, 2017

      8 "Korea Rural Economic Institute"

      9 H. Ahn, "Image Processing for Pig’s Head Removal" 26 (26): 621-624, 2019

      10 J. Sa, "Fast Pig Detection with a Top-view Camera Under Various Illumination Conditions" 11 (11): 266-, 2019

      1 J. Redmon, "YOLO9000: Better, Faster, Stronger" 7263-7271, 2017

      2 M. Kashiha, "Weight Estimation of Pigs Using Top-view Image Processing" 496-503, 2014

      3 Z. Cao, "OpenPose : Realtime Multi-person 2D Pose Estimation Using Part Affinity Fields"

      4 "Open Source Computer Vision: ‘OpenCV’"

      5 A. Pezzuoloa, "On-barn Pig Weight Estimation Based on Body Measurements by a Kinect v1 Depth Camera" 148 : 29-36, 2018

      6 K. He, "Mask R-CNN" 2961-2969, 2017

      7 H. Guo, "LSSA_CAU : An Interactive 3d Point Clouds Analysis Software for Body Measurement of Livestock with Similar Forms of Cows or Pigs" 138 : 60-68, 2017

      8 "Korea Rural Economic Institute"

      9 H. Ahn, "Image Processing for Pig’s Head Removal" 26 (26): 621-624, 2019

      10 J. Sa, "Fast Pig Detection with a Top-view Camera Under Various Illumination Conditions" 11 (11): 266-, 2019

      11 M. Lu, "Extracting Body Surface Dimensions from Top-view Images of Pigs" 11 (11): 182-191, 2018

      12 K. Jun, "Estimating Pig Weights from Images Without Constraint on Posture and Illumination" 153 : 169-176, 2018

      13 N. Brandl, "Determination of Live Weight of Pigs from Dimensions Measured Using Image Analysis" 15 (15): 57-72, 1996

      14 W. Choi, "Detection of Pig’s Posture for Pig’s Head Removal" 26 (26): 625-628, 2018

      15 J. Kim, "Depth-based Detection of Standing-pigs in Moving Noise Environments" 17 (17): 2757-, 2017

      16 M. Kashiha, "Automatic Weight Estimation of Individual Pigs Using Image Analysis" 107 : 38-44, 2014

      17 J. Lee, "Automatic Recognition of Aggressive Pig Behaviors Using Kinect Depth Sensor" 16 (16): 631-, 2016

      18 C. Shi, "An Approach of Pig Weight Estimation Using Binocular Stereo System Based on LabVIEW" 129 : 37-43, 2016

      19 Y. Chen, "Adversarial PoseNet : A Structure-aware Convolutional Network for Human Pose Estimation" 1212-1221, 2017

      20 H. Blum, "A Transformation for Extracting New Descriptors of Shape" 19 (19): 362-380, 1967

      21 N. Otsu, "A Threshold Selection Method from Gray-level Histograms" 9 (9): 62-66, 1979

      22 J. Zunic, "A New Convexity Measure for Polygons" 26 (26): 923-934, 2004

      23 D. McCallum, "A Linear Algorithm for Finding the Convex Hull of a Simple Polygon" 9 (9): 201-206, 1979

      24 M. Ju, "A Kinect-based Segmentation of Touching-pigs for Real-time Monitoring" 18 (18): 1746-, 2018

      25 M. Dillencourt, "A General Approach to Connected-component Labeling for Arbitrary Image Representations" 39 (39): 253-280, 1992

      26 J. Canny, "A Computational Approach to Edge Detection" 679-698, 1986

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2012-10-31 학술지명변경 한글명 : 소프트웨어 및 데이터 공학 -> 정보처리학회논문지. 소프트웨어 및 데이터 공학 KCI등재
      2012-10-10 학술지명변경 한글명 : 정보처리학회논문지B -> 소프트웨어 및 데이터 공학
      외국어명 : The KIPS Transactions : Part B -> KIPS Transactions on Software and Data Engineering
      KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2003-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2002-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2000-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.35 0.35 0.28
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.23 0.19 0.511 0.06
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼