RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCI SCIE SCOPUS

      A local-regional scaling-invariant Bayesian GEV model for estimating rainfall IDF curves in a future climate

      한글로보기

      https://www.riss.kr/link?id=A107470566

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P><B>Abstract</B></P> <P>Future changes in rainfall patterns induced by climate changes will affect society and ecosystems, and quantifying these changes is of utmost importance for the management of hydroclimate risk. ...

      <P><B>Abstract</B></P> <P>Future changes in rainfall patterns induced by climate changes will affect society and ecosystems, and quantifying these changes is of utmost importance for the management of hydroclimate risk. In particular, the estimation of intensity-duration-frequency (IDF) curves for rainfall data is a routine procedure in urban hydrology and hydraulic studies and should be revisited to reflect future changes in rainfall variability. In this work, we propose a novel methodology based on the scaling-invariant property of rainfall duration versus intensity to estimate parameters of a generalized extreme value (GEV) distribution at sub-daily scales. A Bayesian inference framework is developed so that uncertainties are reduced and can be easily propagated to IDF curves. The proposed model can be employed to: (i) improve local (at-site) GEV estimates for sites with limited rainfall records; (ii) estimate GEV parameters at sub-daily scales and construct IDF curves for sites where only daily rainfall records are available (partially gauged sites); (iii) construct regional IDF curves for homogeneous hydrologic regions; and (iv) update local and regional IDF curves from simulations of future daily rainfall. The model is tested using historical rainfall data from 18 gauges located in the Han River Watershed in South Korea, and projected climate change scenarios RCP 6 and RCP 8.5 from the Met Office Hadley Centre HadGEM2-AO model. When considering historical data, the results show that the model satisfactorily estimate IDF curves for both gauged and partially gauged sites. In future scenarios, the model reveals a substantial increase in rainfall events of rare intensity (large return periods), mostly due to changes in the rainfall variability rather than changes in the average rainfall. Particularly, for a 100-year return period event, we expect an increase of about 23% in scenario RCP 6 and about 30% under scenario RCP 8.5 when projected using regional IDF curves. To the best of our knowledge, this is the first statistical approach in the literature to assess future changes in regional IDF curves, which in our opinion is more suitable than evaluating local estimates only.</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼