RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Spherical Harmonics Power-spectrum of Global Geopotential Field of Gaussian-bell Type

      한글로보기

      https://www.riss.kr/link?id=A104624642

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Spherical harmonics power spectrum of the geopotential field of Gaussian-bell type on the sphere was investigated using integral formula that is associated with Legendre polynomials. The geopotential field of Gaussian-bell type is defined as a functio...

      Spherical harmonics power spectrum of the geopotential field of Gaussian-bell type on the sphere was investigated using integral formula that is associated with Legendre polynomials. The geopotential field of Gaussian-bell type is defined as a function of sine of angular distance from the bell’s center in order to guarantee the continuity on the global domain. Since the integral-formula associated with the Legendre polynomials was represented with infinite series of polynomial, an estimation method was developed to make the procedure computationally efficient while preserving the accuracy. The spherical harmonics power spectrum was shown to vary significantly depending on the scale parameter of the Gaussian bell. Due to the accurate procedure of the new method, the power (degree variance) spanning over orders that were far higher than machine roundoff was well explored. When the scale parameter (or width) of the Gaussian bell is large, the spectrum drops sharply with the total wavenumber. On the other hand, in case of small scale parameter the spectrum tends to be flat, showing very slow decaying with the total wavenumber. The accuracy of the new method was compared with theoretical values for various scale parameters. The new method was found advantageous over discrete numerical methods, such as Gaussian quadrature and Fourier method, in that it can produce the power spectrum with accuracy and computational efficiency for all range of total wavenumber. The results of present study help to determine the allowable maximum scale parameter of the geopotential field when a Gaussian-bell type is adopted as a localized function.

      더보기

      참고문헌 (Reference)

      1 Wittwer, T., "Ultra-high degree spherical harmonic analysis and synthesis using extended-range arithmetic" 82 : 223-229, 2008

      2 Swarztrauber, P. N., "The vector harmonic transform method for solving partial differential equations in spherical geometry" 121 : 3415-3437, 1993

      3 Hofsommer, D.J., "Table of Fourier Coefficients of Associated Legendre Functions" 63 : 460-466, 1960

      4 Sardeshmukh P.D, "Spatial Smoothing on the sphere" 121 : 2524-2529, 1984

      5 Cheong, H.B., "On the interpolativeness of discrete Legendre functions" CSREA press 252-258, 2008

      6 Nehrkorn T., "On the computation of Legendre functions in spectral models" 118 : 2248-2251, 1990

      7 Jekeli, C., "On the computation and approximation of ultra-high-degree spherical harmonic series" 81 : 603-615, 2007

      8 Sneeuw, N., "Global spherical harmonic computation by two-dimensional Fourier method" 70 : 224-232, 1996

      9 정형빈, "Geopotential Field in Nonlinear Balance with the Sectoral Mode of Rossby-Haurwitz Wave on the Inclined Rotation Axis" 한국지구과학회 28 (28): 936-946, 2007

      10 Cheong, H. B., "Fourierseries representation and projection of spherical harmonic functions" 86 : 975-990, 2012

      1 Wittwer, T., "Ultra-high degree spherical harmonic analysis and synthesis using extended-range arithmetic" 82 : 223-229, 2008

      2 Swarztrauber, P. N., "The vector harmonic transform method for solving partial differential equations in spherical geometry" 121 : 3415-3437, 1993

      3 Hofsommer, D.J., "Table of Fourier Coefficients of Associated Legendre Functions" 63 : 460-466, 1960

      4 Sardeshmukh P.D, "Spatial Smoothing on the sphere" 121 : 2524-2529, 1984

      5 Cheong, H.B., "On the interpolativeness of discrete Legendre functions" CSREA press 252-258, 2008

      6 Nehrkorn T., "On the computation of Legendre functions in spectral models" 118 : 2248-2251, 1990

      7 Jekeli, C., "On the computation and approximation of ultra-high-degree spherical harmonic series" 81 : 603-615, 2007

      8 Sneeuw, N., "Global spherical harmonic computation by two-dimensional Fourier method" 70 : 224-232, 1996

      9 정형빈, "Geopotential Field in Nonlinear Balance with the Sectoral Mode of Rossby-Haurwitz Wave on the Inclined Rotation Axis" 한국지구과학회 28 (28): 936-946, 2007

      10 Cheong, H. B., "Fourierseries representation and projection of spherical harmonic functions" 86 : 975-990, 2012

      11 Risbo T., "Fourier transform summation of Legendre series and D-functions" 70 : 383-396, 1996

      12 Moriguchi S. I., "Formulas for mathematical functions III" Iwanami Shoten 310-, 1990

      13 Rod Blais, J. A., "Discrete spherical harmonic transforms: numerical preconditioning and optimization" 5102 : 683-645, 2008

      14 Dilts G. A., "Computation of Spherical harmonic Expansion Coefficients via FFT’s" 57 : 439-453, 1985

      15 Hopkins, J., "Computation of Normalized Associated Legendre Functions Using Recursive Relations" 78 : 476-477, 1973

      16 Cheong, H. B., "Applications to Elliptic and Vorticity Equations" 157 : 327-349, 2000

      17 Enomoto, T., "Accurate and robust Legendre transforms at large truncation wavenumbers with the Fourier method" 17-19, 2004

      18 Ricardi L.J., "A recurrence technique for expanding a function in spherical harmonics" 21 : 583-535, 1972

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-02-19 학회명변경 영문명 : 미등록 -> The Korean Earth Science Society KCI등재
      2007-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.47 0.47 0.49
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.51 0.52 0.909 0.21
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼