RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      국민청원 주제 분석 및 딥러닝 기반 답변 가능 청원 예측 = Topic Analysis of the National Petition Site and Prediction of Answerable Petitions Based on Deep Learning

      한글로보기

      https://www.riss.kr/link?id=A106586353

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Since the opening of the national petition site, it has attracted much attention. In this paper, we perform topic analysis of the national petition site and propose a prediction model for answerable petitions based on deep learning. First, 1,500 petitions are collected, topics are extracted based on the petitions’ contents. Main subjects are defined using K-means clustering algorithm, and detailed subjects are defined using topic modeling of petitions belonging to the main subjects. Also, long short-term memory (LSTM) is used for prediction of answerable petitions. Not only title and contents but also categories, length of text, and ratio of part of speech such as noun, adjective, adverb, verb are also used for the proposed model. Our experimental results show that the type 2 model using other features such as ratio of part of speech, length of text, and categories outperforms the type 1 model without other features.
      번역하기

      Since the opening of the national petition site, it has attracted much attention. In this paper, we perform topic analysis of the national petition site and propose a prediction model for answerable petitions based on deep learning. First, 1,500 petit...

      Since the opening of the national petition site, it has attracted much attention. In this paper, we perform topic analysis of the national petition site and propose a prediction model for answerable petitions based on deep learning. First, 1,500 petitions are collected, topics are extracted based on the petitions’ contents. Main subjects are defined using K-means clustering algorithm, and detailed subjects are defined using topic modeling of petitions belonging to the main subjects. Also, long short-term memory (LSTM) is used for prediction of answerable petitions. Not only title and contents but also categories, length of text, and ratio of part of speech such as noun, adjective, adverb, verb are also used for the proposed model. Our experimental results show that the type 2 model using other features such as ratio of part of speech, length of text, and categories outperforms the type 1 model without other features.

      더보기

      국문 초록 (Abstract)

      청와대 국민 청원 사이트가 개설된 이래로 많은 관심을 받고 있다. 본 논문에서는 국민 청원의 주제를 분석하고 딥러닝을 활용하여 답변 가능한 청원을 예측하는 모델을 제안하였다. 먼저, 추천순으로 1,500개의 청원글을 수집하였고, K-means 클러스터링을 적용하여 청원글을 군집하여 대주제를 정의하고, 보다 구체적인 세부 주제를 정의하기 위히여 토픽 모델링을 실시하였다. 다음으로는 LSTM을 활용한 답변 가능한 청원 예측 모델을 생성하여, 20만의 청원동의를 얻는 청원을 예측하기 위한 모델을 개발하였다. 이를 위해 글의 주제와 본문뿐만 아니라 글의 길이, 카테고리, 특정 품사의 비율이 영향을 미칠 수 있는지를 살펴보았다. 그 결과, 본문과 함께 글의 길이, 카테고리, 체언, 용언, 독립언, 수식언의 품사의 비율을 변수로 추가한 모델의 f1-score가 0.9 이상으로 글의 제목과 본문을 변수로 하는 모델보다 예측력이 높음을 알 수 있었다.
      번역하기

      청와대 국민 청원 사이트가 개설된 이래로 많은 관심을 받고 있다. 본 논문에서는 국민 청원의 주제를 분석하고 딥러닝을 활용하여 답변 가능한 청원을 예측하는 모델을 제안하였다. 먼저, ...

      청와대 국민 청원 사이트가 개설된 이래로 많은 관심을 받고 있다. 본 논문에서는 국민 청원의 주제를 분석하고 딥러닝을 활용하여 답변 가능한 청원을 예측하는 모델을 제안하였다. 먼저, 추천순으로 1,500개의 청원글을 수집하였고, K-means 클러스터링을 적용하여 청원글을 군집하여 대주제를 정의하고, 보다 구체적인 세부 주제를 정의하기 위히여 토픽 모델링을 실시하였다. 다음으로는 LSTM을 활용한 답변 가능한 청원 예측 모델을 생성하여, 20만의 청원동의를 얻는 청원을 예측하기 위한 모델을 개발하였다. 이를 위해 글의 주제와 본문뿐만 아니라 글의 길이, 카테고리, 특정 품사의 비율이 영향을 미칠 수 있는지를 살펴보았다. 그 결과, 본문과 함께 글의 길이, 카테고리, 체언, 용언, 독립언, 수식언의 품사의 비율을 변수로 추가한 모델의 f1-score가 0.9 이상으로 글의 제목과 본문을 변수로 하는 모델보다 예측력이 높음을 알 수 있었다.

      더보기

      참고문헌 (Reference)

      1 박근우, "이분형 자료의 분류문제에서 불균형을 다루기 위한 표본재추출 방법 비교" 한국통계학회 32 (32): 349-374, 2019

      2 유홍연, "실시간 뉴스 기반의 이슈 분석을 위한 점증적 군집화 및 다중 문서 요약" 한국정보과학회 46 (46): 355-362, 2019

      3 박건숙, "빅데이터의 하위 주제어 의미 분석 연구" 사단법인 한국언어학회 (65) : 89-110, 2013

      4 D. Scully, "Web-scale K-means clustering" 1177-1178, 2010

      5 "The Cheong Wa Dae National Petition Site"

      6 "Scikit-learn"

      7 D. M. Blei, "Latent Dirichlet Allocation" 3 : 993-1022, 2003

      8 D. W. Ko, "Korean Natural Language Processing and Analysis Using KoNLPy and Word2Vec" 140-142, 2018

      1 박근우, "이분형 자료의 분류문제에서 불균형을 다루기 위한 표본재추출 방법 비교" 한국통계학회 32 (32): 349-374, 2019

      2 유홍연, "실시간 뉴스 기반의 이슈 분석을 위한 점증적 군집화 및 다중 문서 요약" 한국정보과학회 46 (46): 355-362, 2019

      3 박건숙, "빅데이터의 하위 주제어 의미 분석 연구" 사단법인 한국언어학회 (65) : 89-110, 2013

      4 D. Scully, "Web-scale K-means clustering" 1177-1178, 2010

      5 "The Cheong Wa Dae National Petition Site"

      6 "Scikit-learn"

      7 D. M. Blei, "Latent Dirichlet Allocation" 3 : 993-1022, 2003

      8 D. W. Ko, "Korean Natural Language Processing and Analysis Using KoNLPy and Word2Vec" 140-142, 2018

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2012-10-31 학술지명변경 한글명 : 소프트웨어 및 데이터 공학 -> 정보처리학회논문지. 소프트웨어 및 데이터 공학 KCI등재
      2012-10-10 학술지명변경 한글명 : 정보처리학회논문지B -> 소프트웨어 및 데이터 공학
      외국어명 : The KIPS Transactions : Part B -> KIPS Transactions on Software and Data Engineering
      KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2003-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2002-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2000-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.35 0.35 0.28
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.23 0.19 0.511 0.06
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼