RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Temporal Variability of Atomic Hydrogen From the Mesopause to the Upper Thermosphere

      한글로보기

      https://www.riss.kr/link?id=O119565715

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      We investigate atomic hydrogen (H) variability from the mesopause to the upper thermosphere, on time scales of solar cycle, seasonal, and diurnal, using measurements made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) in...

      We investigate atomic hydrogen (H) variability from the mesopause to the upper thermosphere, on time scales of solar cycle, seasonal, and diurnal, using measurements made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere Ionosphere Mesosphere Energetics Dynamics satellite, and simulations by the National Center for Atmospheric Research Whole Atmosphere Community Climate Model‐eXtended (WACCM‐X). In the mesopause region (85 to 95 km), the seasonal and solar cycle variations of H simulated by WACCM‐X are consistent with those from SABER observations: H density is higher in summer than in winter, and slightly higher at solar minimum than at solar maximum. However, mesopause region H density from the Mass‐Spectrometer‐Incoherent‐Scatter (National Research Laboratory Mass‐Spectrometer‐Incoherent‐Scatter 00 (NRLMSISE‐00)) empirical model has reversed seasonal variation compared to WACCM‐X and SABER. From the mesopause to the upper thermosphere, H density simulated by WACCM‐X switches its solar cycle variation twice, and seasonal dependence once, and these changes of solar cycle and seasonal variability occur in the lower thermosphere (~95 to 130 km), whereas H from NRLMSISE‐00 does not change solar cycle and seasonal dependence from the mesopause through the thermosphere. In the upper thermosphere (above 150 km), H density simulated by WACCM‐X is higher at solar minimum than at solar maximum, higher in winter than in summer, and also higher during nighttime than daytime. The amplitudes of these variations are on the order of factors of ~10, ~2, and ~2, respectively. This is consistent with NRLMSISE‐00.


      In the mesopause, hydrogen density is higher in summer than in winter, and higher at solar minimum than at solar maximum
      MSIS exhibits reverse seasonal variation than WACCM and SABER do in the mesopause region
      In the upper thermosphere, H is higher at solar minimum than solar maximum, higher in winter than summer, and also higher at night than day

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼