RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Quantitative Analysis and Band Gap Determination for CIGS Absorber Layers Using Surface Techniques

      한글로보기

      https://www.riss.kr/link?id=A107472896

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>Recently, Cu(In<SUB><I>X</I></SUB>Ga<SUB>(1−<I>X</I>)</SUB>)Se<SUB>2</SUB> (CIGS) absorber layers have been extensively studied by many research groups for thin-film solar cel...

      <P>Recently, Cu(In<SUB><I>X</I></SUB>Ga<SUB>(1−<I>X</I>)</SUB>)Se<SUB>2</SUB> (CIGS) absorber layers have been extensively studied by many research groups for thin-film solar cell technology. CIGS material is particularly promising due to its exceptionally high absorption coefficient and large band gap range, which is adjustable as a function of alloy stoichiometry. To enhance the conversion performance of CIGS solar cells, understanding the CIGS structure and composition is a crucial challenge. We conducted a quantitative study to determine the bulk composition of the major elements such as Cu, In, Ga, and Se of four different CIGS photovoltaic cells. The compositional information was obtained by X-ray fluorescence (XRF), inductively coupled plasma atomic emission spectroscopy (ICP-AES), and femtosecond laser ablation inductively coupled plasma mass spectrometry (<I>fs</I>-LA-ICP-MS). Then, the XRF concentration ratio was compared with the intensity ratio of <I>fs</I>-LA-ICP-MS to investigate the potential of accurate and rapid analysis using the <I>fs</I>-LA-ICP-MS technique. In contrast to the bulk information, the surface techniques can supply detailed information about the chemical composition across the depth profile. Here, elemental depth distributions of CIGS thin films were investigated using magnetic sector secondary ion mass spectrometry (SIMS) and Auger electron spectroscopy (AES). The atomic distributions of four different CIGS absorber layers exhibited a good agreement although they were obtained using two different surface instruments, AES and SIMS. Comparative analysis results of different CIGS absorber layers using SIMS, AES, and <I>fs</I>-LA-ICP-MS provide us with the appropriate technique for the information of accurate composition in a rapid analysis time. Thanks to a simple approach using the Ga/(In + Ga) ratio, the optical band gap energy of the Cu(In<SUB><I>X</I></SUB>Ga<SUB>(1−<I>X</I>)</SUB>)Se<SUB>2</SUB> quaternary layer was monitored in the entire CIGS layer. The elemental distribution and the band gap determination were then used to elucidate their relationship to the corresponding CIGS cell efficiency result.</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼