1 Julia Tigges, "The hallmarks of fibroblast ageing" Elsevier BV 138 : 26-44, 2014
2 Aaron M. Smith, "Standard machine learning approaches outperform deep representation learning on phenotype prediction from transcriptomics data" Springer Science and Business Media LLC 21 (21): 119-, 2020
3 F. Pedregosa, "Scikit-Learn : Machine Learning in Python" 12 : 2825-2830, 2011
4 A. Drouin, "Predictive Computational Phenotyping and Biomarker Discovery using Reference-free Genome Comparison" 17 : 754-, 2016
5 Jason G. Fleischer, "Predicting age from the transcriptome of human dermal fibroblasts" Springer Science and Business Media LLC 19 (19): 221-, 2018
6 K. P. Murphy, "Machine learning: a probabilistic perspective" The MIT Press 492-493, 2012
7 A. Drouin, "Interpretable Genotype-tophenotype Classifiers with Performance Guarantees" 9 : 4071-, 2019
8 Philip N. Benfey, "From Genotype to Phenotype: Systems Biology Meets Natural Variation" American Association for the Advancement of Science (AAAS) 320 (320): 495-497, 2008
9 Renata Zbieć-Piekarska, "Development of a forensically useful age prediction method based on DNA methylation analysis" Elsevier BV 17 : 173-179, 2015
10 Zhenyu Tang, "Deep Learning of Imaging Phenotype and Genotype for Predicting Overall Survival Time of Glioblastoma Patients" Institute of Electrical and Electronics Engineers (IEEE) 39 (39): 2100-2109, 2020
1 Julia Tigges, "The hallmarks of fibroblast ageing" Elsevier BV 138 : 26-44, 2014
2 Aaron M. Smith, "Standard machine learning approaches outperform deep representation learning on phenotype prediction from transcriptomics data" Springer Science and Business Media LLC 21 (21): 119-, 2020
3 F. Pedregosa, "Scikit-Learn : Machine Learning in Python" 12 : 2825-2830, 2011
4 A. Drouin, "Predictive Computational Phenotyping and Biomarker Discovery using Reference-free Genome Comparison" 17 : 754-, 2016
5 Jason G. Fleischer, "Predicting age from the transcriptome of human dermal fibroblasts" Springer Science and Business Media LLC 19 (19): 221-, 2018
6 K. P. Murphy, "Machine learning: a probabilistic perspective" The MIT Press 492-493, 2012
7 A. Drouin, "Interpretable Genotype-tophenotype Classifiers with Performance Guarantees" 9 : 4071-, 2019
8 Philip N. Benfey, "From Genotype to Phenotype: Systems Biology Meets Natural Variation" American Association for the Advancement of Science (AAAS) 320 (320): 495-497, 2008
9 Renata Zbieć-Piekarska, "Development of a forensically useful age prediction method based on DNA methylation analysis" Elsevier BV 17 : 173-179, 2015
10 Zhenyu Tang, "Deep Learning of Imaging Phenotype and Genotype for Predicting Overall Survival Time of Glioblastoma Patients" Institute of Electrical and Electronics Engineers (IEEE) 39 (39): 2100-2109, 2020
11 Alexander I. Young, "Deconstructing the sources of genotype-phenotype associations in humans" American Association for the Advancement of Science (AAAS) 365 (365): 1396-1400, 2019
12 Steve Horvath, "DNA methylation age of human tissues and cell types" Springer Science and Business Media LLC 14 (14): 3156-, 2013
13 J. Phillip, "Biophysical and Biomolecular Determination of Cellular Age in Humans" 1 : 2017
14 Yoav Freund, "A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting" Elsevier BV 55 (55): 119-139, 1997