RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Integrated microfluidic system for separation and detection of extracellular vesicles from plasma

      한글로보기

      https://www.riss.kr/link?id=T16909240

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Recent research has found a correlation between the levels of immune checkpoint markers present in extracellular vesicles (EVs) and the effectiveness of immunotherapy treatments. In this work, we describe the development of an integrated microfluidic system (IMS) that allows for the separation and identification of EVs containing the immune checkpoint markers programmed death ligand 1 (PD-L1) and programmed death protein 1 (PD-1) without the contamination of lipoproteins, which are prevalent in plasma. We first created a size difference between lipoproteins and EVs by immobilizing the lipoproteins on the surface of beads within the plasma using antigen-antibody reactions. Subsequently, the pre-treated sample was introduced into a spiral microfluidic channel to separate nanometer-sized EVs from micrometer-sized lipoprotein-bead complexes. We designed a microfluidic system to connect the channel where pure EVs are separated to the detection unit so that the separated EVs can be immobilized on the electrochemical sensor surface coated with PD-L1 and PD-1 antibodies. This device can rapidly detect the levels of immune checkpoint markers present in EVs over a broad clinical concentration range (1 × 104 to 1 × 108 EVs/mL). Additionally, analysis of 28 plasma samples from 8 healthy donors and 20 lung cancer patients showed that PD-L1 and PD-1 expression on EVs could potentially improve the immunotherapy candidate selection process. This suggests that this device, when used in conjunction with traditional tissue-based PD-L1 testing, may help identify additional patients who may benefit from immunotherapy treatment. Therefore, we anticipated that our approach would contribute positively to the clinical assessment of candidates for immunotherapy.
      번역하기

      Recent research has found a correlation between the levels of immune checkpoint markers present in extracellular vesicles (EVs) and the effectiveness of immunotherapy treatments. In this work, we describe the development of an integrated microfluidic ...

      Recent research has found a correlation between the levels of immune checkpoint markers present in extracellular vesicles (EVs) and the effectiveness of immunotherapy treatments. In this work, we describe the development of an integrated microfluidic system (IMS) that allows for the separation and identification of EVs containing the immune checkpoint markers programmed death ligand 1 (PD-L1) and programmed death protein 1 (PD-1) without the contamination of lipoproteins, which are prevalent in plasma. We first created a size difference between lipoproteins and EVs by immobilizing the lipoproteins on the surface of beads within the plasma using antigen-antibody reactions. Subsequently, the pre-treated sample was introduced into a spiral microfluidic channel to separate nanometer-sized EVs from micrometer-sized lipoprotein-bead complexes. We designed a microfluidic system to connect the channel where pure EVs are separated to the detection unit so that the separated EVs can be immobilized on the electrochemical sensor surface coated with PD-L1 and PD-1 antibodies. This device can rapidly detect the levels of immune checkpoint markers present in EVs over a broad clinical concentration range (1 × 104 to 1 × 108 EVs/mL). Additionally, analysis of 28 plasma samples from 8 healthy donors and 20 lung cancer patients showed that PD-L1 and PD-1 expression on EVs could potentially improve the immunotherapy candidate selection process. This suggests that this device, when used in conjunction with traditional tissue-based PD-L1 testing, may help identify additional patients who may benefit from immunotherapy treatment. Therefore, we anticipated that our approach would contribute positively to the clinical assessment of candidates for immunotherapy.

      더보기

      목차 (Table of Contents)

      • Contents ................................................................................................................... i
      • List of Figures ........................................................................................................ iv
      • List of Tables ...................................................................................................... viii
      • Abstract .................................................................................................................. ix
      • Chapter 1. Introduction ...................................................................................... 1
      • Contents ................................................................................................................... i
      • List of Figures ........................................................................................................ iv
      • List of Tables ...................................................................................................... viii
      • Abstract .................................................................................................................. ix
      • Chapter 1. Introduction ...................................................................................... 1
      • 1.1 Extracellular vesicles (EVs) .................................................................................... 1
      • 1.2 Enrichment of EVs using a microfluidic chip ........................................................... 3
      • 1.3 Objectives of the research ......................................................................................... 6
      • Chapter 2. EV separation and detection through the integration of spiral
      • microfluidic channels and electrochemical sensors. ........................................... 7
      • 2.1 Introduction ............................................................................................................... 7
      • 2.2 Materials and methods ............................................................................................ 12
      • Electrochemical sensor fabrication .................................................................... 12
      • Microfluidic device fabrication and integration with electrochemical sensors . 14
      • Device characterization ..................................................................................... 15
      • Preparation of beads coated with antibodies ...................................................... 15
      • Sample preparation ............................................................................................ 16
      • Simulations of computational fluid dynamics (CFD) ........................................ 17
      • Ultracentrifugation (UC) ................................................................................... 17
      • Size exclusion chromatography (SEC) .............................................................. 17
      • Microfluidic device ............................................................................................ 18
      • Nanoparticle tracking analysis (NTA) ............................................................... 19
      • Transmission electron microscopy (TEM) ........................................................ 19
      • Flow cytometry .................................................................................................. 19
      • Electrochemical analysis ................................................................................... 20
      • 2.3 Results and discussion ............................................................................................ 23
      • Strategy to separate EVs from lipoproteins in plasma ....................................... 23
      • Investigation of the experimental conditions in the spiral channel using
      • fluorescent beads. .............................................................................................. 26
      • Assessment of the efficacy in separation of EVs from lipoproteins utilizing the
      • spiral channel ..................................................................................................... 31
      • Resistance design for integrating microfluidic channels with detection part .... 36
      • EV detection by electrochemical technique ....................................................... 40
      • Clinical sample analysis .................................................................................... 47
      • Conclusion ...................................................................................................................... 53
      • References ...................................................................................................................... 54
      • Accomplishments ........................................................................................................... 60
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼