RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Identification of circulating transcripts associated with adenoma-carcinoma sequence in colorectal cancer

      한글로보기

      https://www.riss.kr/link?id=T16070144

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Colorectal cancer (CRC) is the third most common cancer worldwide and the second leading cause of cancer-related mortality. The survival rate of CRC sharply declines with late detection of the cancer, so early diagnosis of CRC through regular screening is important. It is known that most CRCs develop through the adenoma-carcinoma sequence (ACS), which describes the transformation of normal epithelium to a non-advanced adenoma (NA) to an advanced adenoma (AA) and ultimately to a carcinoma. AA is known to have a high risk for developing CRC. Therefore, it is important to detect AA as well as CRC for decreasing the incidence of CRC. Currently, colonoscopy is available for screening AA and CRC, but it shows low compliance due to the invasiveness and inconvenience. Therefore, this study aimed to identify circulating transcripts that can be useful to develop a molecular assay for screening AA and CRC. For this purpose, the study was set up to identify circulating transcripts associated with the ACS. In brief, a total of blood samples was collected from subjects scheduled for colonoscopy, and the subjects were divided into 4 groups based on the results of the colonoscopy: (I) CRC, (II) AA, (III) NA, and (IV) control group. And then, the relative expression levels of circulating transcripts in the CRC, AA, NA, and control group were determined using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). The results showed that a total of 20 circulating transcripts were differentially expressed in each step of the ACS. Subsequently, expression profiles of the 20 circulating transcripts were analyzed by an artificial intelligence (AI) model to differentiate the AA and CRC group from the control and NA group. As a result, the sensitivity to detect AA and CRC was 75% and 89%, respectively, and the specificity was 72%. In conclusion, it seems that the 20 multiple circulating transcripts associated with the ACS may be useful to differentiate the AA and CRC group.
      번역하기

      Colorectal cancer (CRC) is the third most common cancer worldwide and the second leading cause of cancer-related mortality. The survival rate of CRC sharply declines with late detection of the cancer, so early diagnosis of CRC through regular screenin...

      Colorectal cancer (CRC) is the third most common cancer worldwide and the second leading cause of cancer-related mortality. The survival rate of CRC sharply declines with late detection of the cancer, so early diagnosis of CRC through regular screening is important. It is known that most CRCs develop through the adenoma-carcinoma sequence (ACS), which describes the transformation of normal epithelium to a non-advanced adenoma (NA) to an advanced adenoma (AA) and ultimately to a carcinoma. AA is known to have a high risk for developing CRC. Therefore, it is important to detect AA as well as CRC for decreasing the incidence of CRC. Currently, colonoscopy is available for screening AA and CRC, but it shows low compliance due to the invasiveness and inconvenience. Therefore, this study aimed to identify circulating transcripts that can be useful to develop a molecular assay for screening AA and CRC. For this purpose, the study was set up to identify circulating transcripts associated with the ACS. In brief, a total of blood samples was collected from subjects scheduled for colonoscopy, and the subjects were divided into 4 groups based on the results of the colonoscopy: (I) CRC, (II) AA, (III) NA, and (IV) control group. And then, the relative expression levels of circulating transcripts in the CRC, AA, NA, and control group were determined using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). The results showed that a total of 20 circulating transcripts were differentially expressed in each step of the ACS. Subsequently, expression profiles of the 20 circulating transcripts were analyzed by an artificial intelligence (AI) model to differentiate the AA and CRC group from the control and NA group. As a result, the sensitivity to detect AA and CRC was 75% and 89%, respectively, and the specificity was 72%. In conclusion, it seems that the 20 multiple circulating transcripts associated with the ACS may be useful to differentiate the AA and CRC group.

      더보기

      국문 초록 (Abstract)

      대장암은 전 세계에서 세 번째로 많이 발병하는 암이며 암과 관련된 사망에 있어 두 번째로 주요한 원인이 된다. 대장암은 진단되는 시기가 늦어 짐에 따라 생존율이 급격히 감소하므로 정기적인 검진을 통한 조기 진단이 중요하다. 또한 대부분의 대장암은 정상 상피세포에서 비진행선종, 진행선종을 거쳐 암으로 진행되는 선종-암화 기전을 통해 발생하는 것으로 알려져 있다. 진행선종은 선종 중에서도 암으로 발전할 확률이 높은 선종이므로 대장암의 발병율을 낮추기 위해서는 선별검사를 통해 이러한 진행선종을 검출하는 것이 중요하다. 그러나 기존에 주로 이용되는 검사법인 대장내시경은 침습적이고 불편하다는 단점으로 인하여 대상자들의 순응도가 낮다. 따라서 본 연구에서는 대장암 선별 검사법에서 유용하게 이용될 수 있는 선종-암화 기전과 연관된 혈중전사체들을 규명하고자 하였다. 먼저 대장내시경이 예정된 대상자의 혈액을 채취하고, 대장내시경 결과에 따라 대장암군, 진행선종군, 비진행선종군, 대조군으로 나누었다. 다음으로, 실시간 정량적 중합효소 증폭법(RT-qPCR)을 이용하여 대장암군, 진행선종군, 비진행선종군 및 대조군에서 혈중전사체들의 상대발현양을 분석하였다. 그 결과에 따르면 총 20개의 혈중전사체가 선종-암화 기전 단계에 따라 발현 양상에 유의한 차이를 나타냈다. 그 후 해당 20개 혈중전사체의 발현 프로파일을 기반으로 대장암군 과 진행선종군을 대조군 과 비진행선종군으로부터 구별하는 인공지능(AI) 모델을 구축하였다. 구축된 인공지능 모델의 성능을 확인한 결과에 따르면 대장암군과 진행선종군에 대한 민감도는 각각 89%와 75%였고, 비진행선종과 대조군에 대한 특이도는 72%로 나타났다. 본 연구의 결과는 대장암의 선종-암화 기전과 관련된 특정 혈중전사체들이 대장암군 및 진행선종군을 구별하는데 유용할 수 있음을 보여주고 있다.
      번역하기

      대장암은 전 세계에서 세 번째로 많이 발병하는 암이며 암과 관련된 사망에 있어 두 번째로 주요한 원인이 된다. 대장암은 진단되는 시기가 늦어 짐에 따라 생존율이 급격히 감소하므로 정...

      대장암은 전 세계에서 세 번째로 많이 발병하는 암이며 암과 관련된 사망에 있어 두 번째로 주요한 원인이 된다. 대장암은 진단되는 시기가 늦어 짐에 따라 생존율이 급격히 감소하므로 정기적인 검진을 통한 조기 진단이 중요하다. 또한 대부분의 대장암은 정상 상피세포에서 비진행선종, 진행선종을 거쳐 암으로 진행되는 선종-암화 기전을 통해 발생하는 것으로 알려져 있다. 진행선종은 선종 중에서도 암으로 발전할 확률이 높은 선종이므로 대장암의 발병율을 낮추기 위해서는 선별검사를 통해 이러한 진행선종을 검출하는 것이 중요하다. 그러나 기존에 주로 이용되는 검사법인 대장내시경은 침습적이고 불편하다는 단점으로 인하여 대상자들의 순응도가 낮다. 따라서 본 연구에서는 대장암 선별 검사법에서 유용하게 이용될 수 있는 선종-암화 기전과 연관된 혈중전사체들을 규명하고자 하였다. 먼저 대장내시경이 예정된 대상자의 혈액을 채취하고, 대장내시경 결과에 따라 대장암군, 진행선종군, 비진행선종군, 대조군으로 나누었다. 다음으로, 실시간 정량적 중합효소 증폭법(RT-qPCR)을 이용하여 대장암군, 진행선종군, 비진행선종군 및 대조군에서 혈중전사체들의 상대발현양을 분석하였다. 그 결과에 따르면 총 20개의 혈중전사체가 선종-암화 기전 단계에 따라 발현 양상에 유의한 차이를 나타냈다. 그 후 해당 20개 혈중전사체의 발현 프로파일을 기반으로 대장암군 과 진행선종군을 대조군 과 비진행선종군으로부터 구별하는 인공지능(AI) 모델을 구축하였다. 구축된 인공지능 모델의 성능을 확인한 결과에 따르면 대장암군과 진행선종군에 대한 민감도는 각각 89%와 75%였고, 비진행선종과 대조군에 대한 특이도는 72%로 나타났다. 본 연구의 결과는 대장암의 선종-암화 기전과 관련된 특정 혈중전사체들이 대장암군 및 진행선종군을 구별하는데 유용할 수 있음을 보여주고 있다.

      더보기

      목차 (Table of Contents)

      • CONTENTS
      • LIST OF FIGURES iii
      • LIST OF TABLES v
      • ABBREVIATIONS vii
      • CONTENTS
      • LIST OF FIGURES iii
      • LIST OF TABLES v
      • ABBREVIATIONS vii
      • ABSTRACT IN ENGLISH xi
      • I. INTRODUCTION 1
      • II. MATERIALS AND METHODS 10
      • 1. Study subjects 10
      • 2. Blood collection and RNA preparation 13
      • 3. cDNA synthesis 15
      • 4. Quantitative PCR assay 16
      • 5. RNA sequencing analysis and differentially expressed gene analysis 17
      • 6. Protein-protein interaction network analysis 19
      • 7. Co-expression network analysis 20
      • 8. Gene ontology enrichment and pathway analysis 21
      • 9. Statistical analysis 22
      • 10. AI model for classification 23
      • III. RESULT 25
      • 1. Schemes for identification of circulating transcripts associated with the adenoma-carcinoma sequence 25
      • 2. Exploration of circulating transcripts from RNA sequencing analysis 29
      • 3. Differentially expressed circulating transcripts during normal epithelium to non-advanced adenoma transition in the adenoma-carcinoma sequence 38
      • 4. Differentially expressed circulating transcripts during non-advanced adenoma to advanced adenoma transition in the adenoma-carcinoma sequence 45
      • 5. Differentially expressed circulating transcripts during advanced adenoma to colorectal cancer transition in the adenoma-carcinoma sequence 51
      • 6. Expression patterns of circulating transcripts between the control or non-advanced adenoma group and the colorectal cancer group 58
      • 7. Expression patterns of circulating transcripts between the control or non-advanced adenoma group and the advanced adenoma group 61
      • 8. Circulating transcripts that showed changes in the expression levels according to pathological characteristics of colorectal cancer 64
      • 9. Circulating transcripts that showed changes in the expression levels according to pathological characteristics of advanced adenoma 68
      • 10. AI model based on the expression profiles of 20 circulating transcripts 71
      • IV. DISCUSSION 79
      • V. REFERENCES 97
      • ABSTRACT IN KOREAN 113
      더보기

      참고문헌 (Reference) 논문관계도

      1 Baglioni , P., "The IARC Perspective on Colorectal Cancer Screening", 378 : p. 1734-1740, 2018

      2 Mu , Q., "Leaky Gut As a Danger Signal for Autoimmune Diseases", 8 : p. 598-598 ., 2017

      3 Assenov Y. ,, "Computing topological parameters of biological networks", 24 ( 2 ) : p.282-284 ., 2008

      4 Lieberman , D.A. ,, "Five-year colon surveillance after screening colonoscopy", 133 ( 4 ) : p. 1077-1085, 2007

      5 Xi , X. ,, "RNA Biomarkers : Frontier of Precision Medicine for Cancer", 3 ( 1 ) : p. 9-25 ., 2017

      6 Drori , S., "Hic-5 regulates an epithelial program mediated by PPARgamma", 19 ( 3 ) : p. 362-375 ., 2005

      7 Choi , H.-Y. ,, "Lymph node micrometastasis in stage I and II rectal cancer .", 12 ( 2 ) : p. 110-114 ., 2016

      8 Tin Kam , H., "The random subspace method for constructing decision forests .", 20 ( 8 ) : p. 832-844 ., 1998

      9 Hale , V.L., "Shifts in the Fecal Microbiota Associated with Adenomatous Polyps", 26 ( 1 ) : p. 85-94 ., 2017

      10 Wang , G., "A Comparative Assessment of Ensemble Learning for Credit Scoring .", 38 ( 1 ) : p. 223 ? 230, 2011

      1 Baglioni , P., "The IARC Perspective on Colorectal Cancer Screening", 378 : p. 1734-1740, 2018

      2 Mu , Q., "Leaky Gut As a Danger Signal for Autoimmune Diseases", 8 : p. 598-598 ., 2017

      3 Assenov Y. ,, "Computing topological parameters of biological networks", 24 ( 2 ) : p.282-284 ., 2008

      4 Lieberman , D.A. ,, "Five-year colon surveillance after screening colonoscopy", 133 ( 4 ) : p. 1077-1085, 2007

      5 Xi , X. ,, "RNA Biomarkers : Frontier of Precision Medicine for Cancer", 3 ( 1 ) : p. 9-25 ., 2017

      6 Drori , S., "Hic-5 regulates an epithelial program mediated by PPARgamma", 19 ( 3 ) : p. 362-375 ., 2005

      7 Choi , H.-Y. ,, "Lymph node micrometastasis in stage I and II rectal cancer .", 12 ( 2 ) : p. 110-114 ., 2016

      8 Tin Kam , H., "The random subspace method for constructing decision forests .", 20 ( 8 ) : p. 832-844 ., 1998

      9 Hale , V.L., "Shifts in the Fecal Microbiota Associated with Adenomatous Polyps", 26 ( 1 ) : p. 85-94 ., 2017

      10 Wang , G., "A Comparative Assessment of Ensemble Learning for Credit Scoring .", 38 ( 1 ) : p. 223 ? 230, 2011

      11 Cheung K. ,, "The potential of circulating cell free RNA as a biomarker in cancer", 19 ( 7 ) : p. 579-590, 2019

      12 Hall , C., "A Review of the Role of Carcinoembryonic Antigen in Clinical Practice", 35 ( 6 ) : p. 294-305 ., 2019

      13 Toll , A.D. ,, "Prognostic significance of high-grade dysplasia in colorectal adenomas", 13 ( 4 ) : p. 370-373 ., 2011

      14 Sirop , S. ,, "Detection and prognostic impact of micrometastasis in colorectal cancer", 103 ( 6 ) : p. 534-537 ., 2011

      15 Vinay , D.S., "Immune evasion in cancer : Mechanistic basis and therapeutic strategies", 35 Suppl : p. S185-S198 ., 2015

      16 Lee , B.I. ,, "Korean guidelines for colorectal cancer screening and polyp detection ]", 59 ( 2 ) : p. 65-84 ., 2012

      17 Sharma , S. ,, "Tumor cyclooxygenase 2-dependent suppression of dendritic cell function .", 9 : p. 961 ? 968, 2003

      18 Glaves , D., "Correlation between circulating cancer cells and incidence of metastases .", 48 ( 5 ) : p. 665-673 ., 1983

      19 Wild , N., "A combination of serum markers for the early detection of colorectal cancer", 16 ( 24 ) : p. 6111-6121 ., 2010

      20 Xu , Y. ,, "Altered expression of mRNA profiles in blood of early-onset schizophrenia .", 6 : p. 16767-16786 ., 2016

      21 Yu , H., "Significant diagnostic value of circulating tumour cells in colorectal cancer", 20 ( 1 ) : p. 317-325 ., 2020

      22 Murphy , N. ,, "Lifestyle and dietary environmental factors in colorectal cancer susceptibility", 69 : p. 2-9, 2019

      23 Sidor , C., "Mask family proteins ANKHD1 and ANKRD17 regulate YAP nuclear import and stability", 8 : p .e48601- e48620 ., 2019

      24 Tsai , W.S. ,, "Novel Circulating Tumor Cell Assay for Detection of Colorectal Adenomas and Cancer", 10 ( 10 ) : p. e00088- e00096 ., 2019

      25 Zhu , J. ,, "BlyS is up-regulated by hypoxia and promotes migration of human breast cancer cells", 31 ( 1 ) : p. 31-37 ., 2012

      26 Prakash , T., "Expression of conjoined genes : another mechanism for gene regulation in eukaryotes", 5 ( 10 ) : p. e13284-e13284 ., 2010

      27 Moshayoff , V., "Feasibility of Unbiased RNA Profiling of Colorectal Tumors : A Proof of Principle .", 11 ( 7 ) : p. e0159522- e0159533 ., 2016

      28 Anker , P. ,, "Detection of circulating tumour DNA in the blood ( plasma/serum ) of cancer patients", 18 ( 1 ) : p. 65-73 ., 1999

      29 Click , B., "Association of Colonoscopy Adenoma Findings With Longterm Colorectal Cancer Incidence", 319 ( 19 ) : p. 2021-2031 ., 2018

      30 Vogel , LK . ,, "Intestinal PTGS2 mRNA Levels , PTGS2 Gene Polymorphisms , and Colorectal Carcinogenesis", 9 ( 8 ) : e105254-e105261 ., 2014

      31 Baek , D.H. ,, "Clinical Potential of Circulating Tumor Cells in Colorectal Cancer : A Prospective Study", 10 ( 7 ) : p. e00055- e00063, 2019

      32 Ashktorab , H., "Increased MACC1 levels in tissues and blood identify colon adenoma patients at high risk", 14 ( 1 ) : p. 215-223 ., 2016

      33 Martinez , M.E., "A pooled analysis of advanced colorectal neoplasia diagnoses after colonoscopic polypectomy", 136 ( 3 ) : p. 832-841 ., 2009

      34 Singh , A. ,, "Novel Blood-based Transcriptional Biomarker Panels Predict the Late-Phase Asthmatic Response", 197 ( 4 ) : p. 450-462 ., 2018

      35 Shannon P., "Cytoscape : a software environment for integrated models of biomolecular interaction networks", 13 ( 11 ) : p. 2498- 2504, 2003

      36 Xue , V.W. ,, "Non-invasive Potential Circulating mRNA Markers for Colorectal Adenoma Using Targeted Sequencing", 9 : p.12943- 12952, 2019

      37 Chen , S. ,, "Identification of human peripheral blood monocyte gene markers for early screening of solid tumors", 15 ( 3 ) : p. e0230905- e0230919 ., 2020

      38 Atkin , W., "Adenoma surveillance and colorectal cancer incidence : a retrospective , multicentre , cohort study", 18 ( 6 ) : p. 823-834 ., 2017

      39 Kern , C. ,, "Involvement of BAFF and APRIL in the resistance to apoptosis of B-CLL through an autocrine pathway .", 103 : p. 679 ? 688, 2004

      40 He , D. ,, "Whole blood vs PBMC : compartmental differences in gene expression profiling exemplified in asthma .", 15 : p. 67-86 ., 2019

      41 Su , W., "Differential expression , distribution , and function of PPARgamma in the proximal and distal colon .", 30 ( 3 ) : p. 342- 353 ., 2007

      42 Omar , H., "Blood gene signature for early hepatocellular carcinoma detection in patients with chronic hepatitis B.", 49 ( 2 ) : p. 150-157, 2015

      43 Liu , Z., "A systematic review and meta-analysis of diagnostic and prognostic serum biomarkers of colorectal cancer", 9 ( 8 ) : p. e103910-e103922 ., 2014

      44 Ramel , D., "Immune and Smooth Muscle Cells Interactions in Atherosclerosis : How to Target a Breaking Bad Dialogue ?", 10 : p. 1276-1285 ., 2019

      45 Jiang , H., "Expression of ERCC1 and TYMS in colorectal cancer patients and the predictive value of chemotherapy efficacy", 18 ( 2 ) : p. 1157-1162 ., 2019

      46 Nichita , C., "A novel gene expression signature in peripheral blood mononuclear cells for early detection of colorectal cancer", 39 ( 5 ) : p. 507-517 ., 2014

      47 Augimeri , G., "Natural and Synthetic PPARgamma Ligands in Tumor Microenvironment : A New Potential Strategy against Breast Cancer", 21 ( 24 ) : p.9721-9739 ., 2020

      48 Johnson , D.A. ,, "Plasma Septin9 versus fecal immunochemical testing for colorectal cancer screening : a prospective multicenter study", 9 ( 6 ) : p. e98238- e98245 ., 2014

      49 LaPointe , L.C., "Discovery and validation of molecular biomarkers for colorectal adenomas and cancer with application to blood testing", 7 ( 1 ) : p. e29059-e29068 ., 2012

      50 Fukui , H., "Increased Intestinal Permeability and Decreased Barrier Function : Does It Really Influence the Risk of Inflammation ?", 1 ( 3 ) : p. 135-145, 2016

      51 Dangaj , D., "Cooperation between Constitutive and Inducible Chemokines Enables T Cell Engraftment and Immune Attack in Solid Tumors .", 35 ( 6 ) : p. 885-900.e10 ., 2019

      52 Ciarloni , L., "Development and Clinical Validation of a Blood Test Based on 29-Gene Expression for Early Detection of Colorectal Cancer", 22 ( 18 ) : p. 4604-4611, 2016

      53 Rodia , M.T., "Systematic large-scale meta-analysis identifies a panel of two mRNAs as blood biomarkers for colorectal cancer detection", 7 ( 21 ) : p. 30295-30306 ., 2016

      54 Li , J. ,, "Identification and Analysis of Blood Gene Expression Signature for Osteoarthritis With Advanced Feature Selection Methods", 9 : p. 246-253 ., 2018

      55 Atkin , W.S., "Once-only flexible sigmoidoscopy screening in prevention of colorectal cancer : a multicentre randomised controlled trial", 375 ( 9726 ) : p. 1624-1633 ., 2010

      56 Yang , C. ,, "Clinical significance of peripheral circulating tumor cell counts in colorectal polyps and non-metastatic colorectal cancer", 16 ( 1 ) : p. 13-20 ., 2018

      57 Yao , P., "ANKHD1 silencing suppresses the proliferation , migration and invasion of CRC cells by inhibiting YAP1-induced activation of EMT", 8 ( 11 ) : p. 2311-2324 ., 2018

      58 Brenner , H. ,, "Risk of progression of advanced adenomas to colorectal cancer by age and sex : estimates based on 840,149 screening colonoscopies", 56 ( 11 ) : p. 1585-1589, 2007

      59 Gionfriddo , G., "Modulating Tumor-Associated Macrophage Polarization by Synthetic and Natural PPARγ Ligands as a Potential Target in Breast Cancer", 9 ( 1 ) : p. 174-190 ., 2020

      60 Jahr , S. ,, "DNA fragments in the blood plasma of cancer patients : quantitations and evidence for their origin from apoptotic and necrotic cells", 61 ( 4 ) : p. 1659-1665 ., 2001

      61 Liu , D ,, "Reduced CD146 expression promotes tumorigenesis and cancer stemness in colorectal cancer through activating Wnt/β-catenin signaling", 7 ( 26 ) : p. 40704-40718 ., 2016

      62 Rex , D.K., "Colorectal Cancer Screening : Recommendations for Physicians and Patients From the U.S. Multi-Society Task Force on Colorectal Cancer", 153 ( 1 ) : p. 307-323 ., 2017

      63 Tan , F., "Neuron navigator 2 overexpression indicates poor prognosis of colorectal cancer and promotes invasion through the SSH1L/cofilin-1 pathway", 34 : p. 117-128 ., 2015

      64 Martin , L.T.P. ,, "Bitter taste receptors are expressed in human epithelial ovarian and prostate cancers cells and noscapine stimulation impacts cell survival", 454 ( 1-2 ) : p. 203-214 ., 2019

      65 Joehanes , R., "Gene expression analysis of whole blood , peripheral blood mononuclear cells , and lymphoblastoid cell lines from the Framingham Heart Study", 44 ( 1 ) : p. 59-75 ., 2012

      66 Gupta , S., "Recommendations for Follow-Up After Colonoscopy and Polypectomy : A Consensus Update by the US Multi-Society Task Force on Colorectal Cancer", 91 ( 3 ) : p. 463-485 ., 2020

      67 Inamoto , S. ,, "Loss of SMAD4 Promotes Colorectal Cancer Progression by Accumulation of Myeloid-Derived Suppressor Cells through the CCL15- CCR1 Chemokine Axis .", 22 ( 2 ) : p. 492-501 ., 2016

      68 Dizdar , L., "Detection of circulating tumor cells in colorectal cancer patients using the GILUPI CellCollector : results from a prospective , singlecenter study", 13 ( 7 ) : p. 1548-1558 ., 2019

      69 Kozu , T. ,, "Effect of orally administered bovine lactoferrin on the growth of adenomatous colorectal polyps in a randomized , placebo-controlled clinical trial", 2 ( 11 ) : p. 975-983 ., 2009

      70 Pin-Vieito , N., "Predictive Value of Carcinoembryonic Antigen in Symptomatic Patients without Colorectal Cancer : A Post-Hoc Analysis within the COLONPREDICT Cohort", 10 ( 12 ) : p.1036-1048, 2020

      71 Lieberman , D.A. ,, "Guidelines for colonoscopy surveillance after screening and polypectomy : a consensus update by the US Multi-Society Task Force on Colorectal Cancer", 143 ( 3 ) : p. 844-857, 2012

      72 Scimia , M., "Evaluation of a novel liquid biopsy-based ColoScape assay for mutational analysis of colorectal neoplasia and triage of FIT+ patients : a pilot study", 71 ( 12 ) : p. 1123-1126 ., 2018

      73 Tsai , W.-S. ,, "Circulating Tumor Cell Count Correlates with Colorectal Neoplasm Progression and Is a Prognostic Marker for Distant Metastasis in Non-Metastatic Patients", 6 ( 1 ) : p. 24517-24524, 2016

      74 Gaida , M.M., "Expression of the bitter receptor T2R38 in pancreatic cancer : localization in lipid droplets and activation by a bacteria-derived quorum-sensing molecule", 7 ( 11 ) : p. 12623-12632 ., 2016

      75 Ciarloni , L., "Discovery of a 29-gene panel in peripheral blood mononuclear cells for the detection of colorectal cancer and adenomas using high throughput real-time PCR .", 10 ( 4 ) : p. e0123904-e0123920 ., 2015

      76 Williams , M.A. ,, "The potential for monocyte-mediated immunotherapy during infection and malignancy -- Part II : in vivo activation by exogenous cytokines and clinical applications", 34 ( 3-4 ) : p. 207-230 ., 1999

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼