RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI우수등재

      이산화탄소 환경 내 공동 열분해를 통한 나노 철 산화물 기반 금속 바이오차 제조 및 Cr(VI) 흡착 연구 = A Study on Preparation of Nano Iron Oxides-Based Metal Biochar Using Co-Pyrolysis in a CO2 Environment and Adsorption of Cr(VI)

      한글로보기

      https://www.riss.kr/link?id=A108526638

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This study explored the effects of blending nano iron (III) oxides (NIO) with coffee grounds (CG) in a pyrolytic process under a CO2 environment on the generation of syngas (H2 and CO) and biochar properties regarding the removal of Cr(VI) from aqueous solutions. CG and NIO were physically mixed; CG was mass maintained at 1 g while NIO was added. Based on the mass ratio, the resulting solution was named NICG1(NIO/CG ratio=1:1). Compared with the generation amounts of syngas (0.37 mole% H2 & 0.28 mole% CO) at 650°C from single pyrolysis of CG, co-pyrolysis with NIO-based additives resulted in increased production of syngas, with the measured concentrations of H2 and CO reaching 0.99 mole% and 0.86 mole% at the same temperature, respectively. During the pH effect experiments, NICG1 demonstrated the highest removal efficiency under acidic conditions with pH = 2. Adsorption kinetic experiments demonstrated that the pseudo-second-order rate model was suitable for assessing the removal of Cr(VI) by NICG1. Furthermore, the removal of Cr(VI) using NICG1 fitted well with the Freundlich isothernm adsorption model (R2 = 0.9807). In conclusion, co-pyrolysis of blending nano iron(III) oxide and coffee grounds can be considered an efficient resource for simultaneously producing syngas (H2 and CO) as a fuel (energy resource) and metal-biochar as an adsorbent.
      번역하기

      This study explored the effects of blending nano iron (III) oxides (NIO) with coffee grounds (CG) in a pyrolytic process under a CO2 environment on the generation of syngas (H2 and CO) and biochar properties regarding the removal of Cr(VI) from aqueou...

      This study explored the effects of blending nano iron (III) oxides (NIO) with coffee grounds (CG) in a pyrolytic process under a CO2 environment on the generation of syngas (H2 and CO) and biochar properties regarding the removal of Cr(VI) from aqueous solutions. CG and NIO were physically mixed; CG was mass maintained at 1 g while NIO was added. Based on the mass ratio, the resulting solution was named NICG1(NIO/CG ratio=1:1). Compared with the generation amounts of syngas (0.37 mole% H2 & 0.28 mole% CO) at 650°C from single pyrolysis of CG, co-pyrolysis with NIO-based additives resulted in increased production of syngas, with the measured concentrations of H2 and CO reaching 0.99 mole% and 0.86 mole% at the same temperature, respectively. During the pH effect experiments, NICG1 demonstrated the highest removal efficiency under acidic conditions with pH = 2. Adsorption kinetic experiments demonstrated that the pseudo-second-order rate model was suitable for assessing the removal of Cr(VI) by NICG1. Furthermore, the removal of Cr(VI) using NICG1 fitted well with the Freundlich isothernm adsorption model (R2 = 0.9807). In conclusion, co-pyrolysis of blending nano iron(III) oxide and coffee grounds can be considered an efficient resource for simultaneously producing syngas (H2 and CO) as a fuel (energy resource) and metal-biochar as an adsorbent.

      더보기

      국문 초록 (Abstract)

      본 연구는 이산화탄소 환경에서 금속 나노 철 산화물(NIO)과 커피찌꺼기(CG)의 혼합 열분해 공정에 대한 합성 가스(H2 & CO) 생성에 미치는 영향 및 제조된 금속 바이오차(NICG1)의 수용액 내 6가크롬 제거에 대해 조사하였다. 650°C에서 CG의 단독 열분해는 0.37 mole% H2와 0.28 mole% CO의합성 가스 생성을 보였고, NIO를 첨가한 공동 열분해를 통해 합성 가스의 생성량이 증가하였으며, NICG1의 동일한 온도에서 측정된 H2및 CO 농도는 0.99, 0.86 mole%였다. 흡착 실험 결과, NICG1 은 pH 2의 산성조건에서 가장 높은 제거 효율을 보였으며 유사 2차 속도 모델에 의한 6가 크롬 제거에 적합하다는 것을 보여주었다. 또한 NICG1을 사용한 6가 크롬 제거는 Freundlich Isothernm 흡착모델(R2 =0.9807)에 더 적합하였다. 결론적으로 폐자원인 커피찌꺼기와 나노 철 산화물의 co-pyrolysis를 통해 연료자원인 합성 가스(H2와 CO)와 흡착제인 금속 바이오차를 동시에 생성할 수있어 커피찌거기의 활용에 대한 높은 평가를 받을 수 있다.
      번역하기

      본 연구는 이산화탄소 환경에서 금속 나노 철 산화물(NIO)과 커피찌꺼기(CG)의 혼합 열분해 공정에 대한 합성 가스(H2 & CO) 생성에 미치는 영향 및 제조된 금속 바이오차(NICG1)의 수용액 내 6가크...

      본 연구는 이산화탄소 환경에서 금속 나노 철 산화물(NIO)과 커피찌꺼기(CG)의 혼합 열분해 공정에 대한 합성 가스(H2 & CO) 생성에 미치는 영향 및 제조된 금속 바이오차(NICG1)의 수용액 내 6가크롬 제거에 대해 조사하였다. 650°C에서 CG의 단독 열분해는 0.37 mole% H2와 0.28 mole% CO의합성 가스 생성을 보였고, NIO를 첨가한 공동 열분해를 통해 합성 가스의 생성량이 증가하였으며, NICG1의 동일한 온도에서 측정된 H2및 CO 농도는 0.99, 0.86 mole%였다. 흡착 실험 결과, NICG1 은 pH 2의 산성조건에서 가장 높은 제거 효율을 보였으며 유사 2차 속도 모델에 의한 6가 크롬 제거에 적합하다는 것을 보여주었다. 또한 NICG1을 사용한 6가 크롬 제거는 Freundlich Isothernm 흡착모델(R2 =0.9807)에 더 적합하였다. 결론적으로 폐자원인 커피찌꺼기와 나노 철 산화물의 co-pyrolysis를 통해 연료자원인 합성 가스(H2와 CO)와 흡착제인 금속 바이오차를 동시에 생성할 수있어 커피찌거기의 활용에 대한 높은 평가를 받을 수 있다.

      더보기

      참고문헌 (Reference) 논문관계도

      1 Kwon, G., "Valorization of plastics and goethite into iron-carbon composite as persulfate activator for amaranth oxidation" 407 : 127188-, 2021

      2 Lee, S., "Use of CO2 and nylon as the raw materials for flammable gas production through a catalytic thermo-chemical process" 23 : 8922-8931, 2021

      3 Liu, S. S., "Understanding the catalytic upgrading of bio-oil from pine pyrolysis over CO2-activated biochar" 174 : 538-546, 2021

      4 Amjed, M. A., "Surface decoration and characterization of solar driven biochar for the removal of toxic aromatic pollutant" 96 : 2310-2324, 2021

      5 Molday, R.S., "Separation of Cells Labeled with Immunospecific Iron Dextran Microspheres Using High-Gradient Magnetic Chromatography" 170 : 232-238, 1984

      6 Rahman, M.A., "Removal of arsenate from contaminated waters by novel zirconium and zirconium-iron modified biochar" 409 : 124488-, 2021

      7 Zhang, X., "Removal of aqueous Cr(VI) by a magnetic biochar derived from Melia azedarach wood" 256 : 1-10, 2018

      8 Zhang, W. H., "Pb(II) and Cr(VI) sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions" 147 : 545-552, 2013

      9 Treybal, R.E., "Mass-transfer operations" McGraw-Hill 1980

      10 Zhou, L., "Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures" 218 : 351-359, 2016

      1 Kwon, G., "Valorization of plastics and goethite into iron-carbon composite as persulfate activator for amaranth oxidation" 407 : 127188-, 2021

      2 Lee, S., "Use of CO2 and nylon as the raw materials for flammable gas production through a catalytic thermo-chemical process" 23 : 8922-8931, 2021

      3 Liu, S. S., "Understanding the catalytic upgrading of bio-oil from pine pyrolysis over CO2-activated biochar" 174 : 538-546, 2021

      4 Amjed, M. A., "Surface decoration and characterization of solar driven biochar for the removal of toxic aromatic pollutant" 96 : 2310-2324, 2021

      5 Molday, R.S., "Separation of Cells Labeled with Immunospecific Iron Dextran Microspheres Using High-Gradient Magnetic Chromatography" 170 : 232-238, 1984

      6 Rahman, M.A., "Removal of arsenate from contaminated waters by novel zirconium and zirconium-iron modified biochar" 409 : 124488-, 2021

      7 Zhang, X., "Removal of aqueous Cr(VI) by a magnetic biochar derived from Melia azedarach wood" 256 : 1-10, 2018

      8 Zhang, W. H., "Pb(II) and Cr(VI) sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions" 147 : 545-552, 2013

      9 Treybal, R.E., "Mass-transfer operations" McGraw-Hill 1980

      10 Zhou, L., "Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures" 218 : 351-359, 2016

      11 Jarup, L., "Hazards of heavy metal contamination" 68 : 167-182, 2003

      12 Arora, S., "Gasification biochar from horticultural waste: An exemplar of the circular economy in Singapore" 781 : 146573-, 2021

      13 Chandra Sekhar, K., "Fractionation studies and bioaccumulation of sediment-bound heavy metals in Kolleru lake by edible fish" 29 : 1001-1008, 2004

      14 Audry, S., "Fifty-year sedimentary record of heavy metal pollution (Cd, Zn, Cu, Pb) in the Lot River reservoirs (France)" 132 : 413-426, 2004

      15 이우진 ; Jeongyun Choi ; Yoojin Jung, "Fe(II)-initiated reduction of hexavalent chromium in heterogeneous iron oxide suspension" 한국화학공학회 25 (25): 764-769, 2008

      16 Yoon, K., "Enhancement of syngas for H-2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue" 254 : 113803-, 2019

      17 Su, M., "Enhanced hexavalent chromium removal by activated carbon modified with micro-sized goethite using a facile impregnation method" 647 : 47-56, 2019

      18 Wan, S. L., "Enhanced Fluoride Removal from Water by Nanoporous Biochar-Supported Magnesium Oxide" 58 : 9988-9996, 2019

      19 Xu, F., "Direct chemical looping gasification of pine sawdust using Fe2O3-rich sludge ash as an oxygen carrier: Thermal conversion characteristics, product distributions, and gasification performances" 304 : 121499-, 2021

      20 Song, H., "Coupling carbon dioxide and magnetite for the enhanced thermolysis of polyvinyl chloride" 696 : 133951-, 2019

      21 Li, Y., "Biosorption of Cr(VI) onto Auricularia auricula dreg biochar modified by cationic surfactant: Characteristics and mechanism" 269 : 824-832, 2018

      22 Cho, S. H., "Biofuel Production as an Example of Virtuous Valorization of Swine Manure" 9 : 13761-13772, 2021

      23 Park, J. H., "Biochar reduces the bioavailability and phytotoxicity of heavy metals" 348 : 439-451, 2011

      24 Zhang, X., "Adsorption-reduction removal of Cr(VI) by tobacco petiole pyrolytic biochar:Batch experiment, kinetic and mechanism studies" 268 : 149-157, 2018

      25 Chen, X. C., "Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution" 102 : 8877-8884, 2011

      26 Yoon, K., "Adsorption of As(V) and Ni(II) by Fe-Biochar composite fabricated by co-pyrolysis of orange peel and red mud" 188 : 109809-, 2020

      27 Qi, W. F., "Adsorption behavior and mechanism of Cr(VI) using Sakura waste from aqueous solution" 360 : 470-476, 2016

      28 Wan, S. L., "Accelerated antimony and copper removal by manganese oxide embedded in biochar with enlarged pore structure" 402 : 126021-, 2020

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼