RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Experimental study on critical heat flux of highly efficient soft hydrophilic CuO-chitosan nanofluid templates

      한글로보기

      https://www.riss.kr/link?id=A107502136

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Nanofluids (NFs) are highly promising liquids for critical heat flux (CHF) enhancement in pool boiling, due to their environmental friendliness, easy chemical modification, tunability, low cost, and high thermal conductivity (TC). NFs based on CuO nan...

      Nanofluids (NFs) are highly promising liquids for critical heat flux (CHF) enhancement in pool boiling, due to their environmental friendliness, easy chemical modification, tunability, low cost, and high thermal conductivity (TC). NFs based on CuO nanoparticles (NPs) are moderately good for CHF applications, but have low TC compared with other metal-oxide NFs. The development of ecofriendly NFs with enhanced thermal transfer properties is essential. In this study, we engineered a highly efficient, soft, hydrophilic CuO-chitosan (CS) NF template, the first of its kind. CS is a low-cost, naturally abundant, raw material, with hydroxyl, amine, and amide functional groups. When combined with CuO NPs, the CS functional groups create strong CuO-CS nanocomposites (CuO-CS NCs). In this research, 0.003, 0.006, 0.03 and 0.06-wt% CuO-CS NFs were produced by dissolving various concentrations of the CuO-CS NC in deionized water. A nichrome wire was coated with the NF samples during pool boiling experiments. The 0.06-wt% CuO-CS NF showed the highest CHF value, approaching 79%, which is much higher than that of pristine CuO NPs (28%). The chemical structure and crystallinity of the CuO-CS NCs were investigated using Fourier-transform infrared and X-ray photoelectron spectroscopy and X-ray diffraction; zeta potential and zeta size analyses were used to determine their charge, shape, and size. Atomic force microscopy, field-emission scanning electron microscopy, and transmission electron microscopy of the CuO-CS NC-coated nichrome wire after pool boiling experiments revealed a rough surface with high wettability and a low contact angle (42<SUP>o</SUP> for the 0.06-wt% CuO-CS NF sample), due to the formation of a nanoporous, soft template on the wire surface. We also demonstrated a method for in situ production of a naturally available, sustainably green, biodegradable raw material. The robust CuO-CS NF introduced here is expected to enhance pool boiling CHF, even at the lowest concentrations (0.003wt%) required for practical applications.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼