RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      An overview of artificial intelligence and machine learning in shoulder surgery

      한글로보기

      https://www.riss.kr/link?id=A109734756

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Machine learning (ML), a subset of artificial intelligence (AI), utilizes advanced algorithms to learn patterns from data, enabling accurate predictions and decision-making without explicit programming. In orthopedic surgery, ML is transforming clinical practice, particularly in shoulder arthroplasty and rotator cuff tears (RCTs) management. This review explores the fundamental paradigms of ML, including supervised, unsupervised, and reinforcement learning, alongside key algorithms such as XGBoost, neural networks, and generative adversarial networks. In shoulder arthroplasty, ML accurately predicts postoperative outcomes, complications, and implant selection, facilitating personalized surgical planning and cost optimization. Predictive models, including ensemble learning methods, achieve over 90% accuracy in forecasting complications, while neural networks enhance surgical precision through AI-assisted navigation. In RCTs treatment, ML enhances diagnostic accuracy using deep learning models on magnetic resonance imaging and ultrasound, achieving area under the curve values exceeding 0.90. ML models also predict tear reparability with 85% accuracy and postoperative functional outcomes, including range of motion and patient-reported outcomes. Despite remarkable advancements, challenges such as data variability, model interpretability, and integration into clinical workflows persist. Future directions involve federated learning for robust model generalization and explainable AI to enhance transparency. ML continues to revolutionize orthopedic care by providing data-driven, personalized treatment strategies and optimizing surgical outcomes.
      번역하기

      Machine learning (ML), a subset of artificial intelligence (AI), utilizes advanced algorithms to learn patterns from data, enabling accurate predictions and decision-making without explicit programming. In orthopedic surgery, ML is transforming clinic...

      Machine learning (ML), a subset of artificial intelligence (AI), utilizes advanced algorithms to learn patterns from data, enabling accurate predictions and decision-making without explicit programming. In orthopedic surgery, ML is transforming clinical practice, particularly in shoulder arthroplasty and rotator cuff tears (RCTs) management. This review explores the fundamental paradigms of ML, including supervised, unsupervised, and reinforcement learning, alongside key algorithms such as XGBoost, neural networks, and generative adversarial networks. In shoulder arthroplasty, ML accurately predicts postoperative outcomes, complications, and implant selection, facilitating personalized surgical planning and cost optimization. Predictive models, including ensemble learning methods, achieve over 90% accuracy in forecasting complications, while neural networks enhance surgical precision through AI-assisted navigation. In RCTs treatment, ML enhances diagnostic accuracy using deep learning models on magnetic resonance imaging and ultrasound, achieving area under the curve values exceeding 0.90. ML models also predict tear reparability with 85% accuracy and postoperative functional outcomes, including range of motion and patient-reported outcomes. Despite remarkable advancements, challenges such as data variability, model interpretability, and integration into clinical workflows persist. Future directions involve federated learning for robust model generalization and explainable AI to enhance transparency. ML continues to revolutionize orthopedic care by providing data-driven, personalized treatment strategies and optimizing surgical outcomes.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼