RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Interdigitated back‐contact double‐heterojunction GaInP/GaAs solar cells

      한글로보기

      https://www.riss.kr/link?id=O111649257

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2021년

      • 작성언어

        -

      • Print ISSN

        1062-7995

      • Online ISSN

        1099-159X

      • 등재정보

        SCI;SCIE;SCOPUS

      • 자료형태

        학술저널

      • 수록면

        47-53   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 소장기관
      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 계명대학교 동산도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Interdigitated back‐contact (IBC) silicon solar cells are coming of age, but the potential of IBC configurations for compound semiconductor solar cells is yet to be explored. We outline an approach to generalize the diffusion‐driven charge transport (DDCT) method, previously studied for IBC light‐emitting diodes, to develop DDCT solar cells, enabling an IBC double‐heterojunction structure. In particular, we simulate and compare the electrical performance of a GaInP/GaAs DDCT solar cell with an ideal one‐dimensional reference cell to establish how the lateral dimensions of the DDCT structures affect their operation. Also, the suitability of the DDCT solar cells for concentration photovoltaics is explored. The results show that the DDCT solar cells with a finger pitch of approximately 10μm can match and even outperform the ideal reference structure under the AM1.5G solar spectrum, due to reduced Shockley‐Read‐Hall recombination. At high solar concentrations, the performance of the smallest pitch DDCT structure is essentially identical with the reference structure up to 100 suns. This suggests that combining the benefits offered by the IBC design with compound semiconductors could allow the development of an entire family of more efficient solar cells.
      A successful strategy to harness the benefits of interdigitated back‐contact (IBC) solar cells, conventionally available only for silicon cells, is presented for the III‐As compound semiconductors using diffusion‐driven charge transport (DDCT). Our analysis suggests that GaInP/GaAs double heterojunction DDCT solar cells having a finger pitch of 10 µm can outperform an ideal one‐dimensional reference device thanks to minimized Shockley‐Read‐Hall recombination. Overall, combining the IBC design with compound semiconductors could allow the development of an entire family of more efficient solar cells.
      번역하기

      Interdigitated back‐contact (IBC) silicon solar cells are coming of age, but the potential of IBC configurations for compound semiconductor solar cells is yet to be explored. We outline an approach to generalize the diffusion‐driven charge transpo...

      Interdigitated back‐contact (IBC) silicon solar cells are coming of age, but the potential of IBC configurations for compound semiconductor solar cells is yet to be explored. We outline an approach to generalize the diffusion‐driven charge transport (DDCT) method, previously studied for IBC light‐emitting diodes, to develop DDCT solar cells, enabling an IBC double‐heterojunction structure. In particular, we simulate and compare the electrical performance of a GaInP/GaAs DDCT solar cell with an ideal one‐dimensional reference cell to establish how the lateral dimensions of the DDCT structures affect their operation. Also, the suitability of the DDCT solar cells for concentration photovoltaics is explored. The results show that the DDCT solar cells with a finger pitch of approximately 10μm can match and even outperform the ideal reference structure under the AM1.5G solar spectrum, due to reduced Shockley‐Read‐Hall recombination. At high solar concentrations, the performance of the smallest pitch DDCT structure is essentially identical with the reference structure up to 100 suns. This suggests that combining the benefits offered by the IBC design with compound semiconductors could allow the development of an entire family of more efficient solar cells.
      A successful strategy to harness the benefits of interdigitated back‐contact (IBC) solar cells, conventionally available only for silicon cells, is presented for the III‐As compound semiconductors using diffusion‐driven charge transport (DDCT). Our analysis suggests that GaInP/GaAs double heterojunction DDCT solar cells having a finger pitch of 10 µm can outperform an ideal one‐dimensional reference device thanks to minimized Shockley‐Read‐Hall recombination. Overall, combining the IBC design with compound semiconductors could allow the development of an entire family of more efficient solar cells.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼