RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Interface analysis of ultrathin SiO2 layers between c‐Si substrates and phosphorus‐doped poly‐Si by theoretical surface potential analysis using the injection‐dependent lifetime

      한글로보기

      https://www.riss.kr/link?id=O111649256

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Passivated contact structures are often representative of tunnel oxide passivated contact (TOPCon) and polycrystalline silicon on oxide (POLO) solar cells. These passivated contact technologies in silicon solar cells have experienced great strides in ...

      Passivated contact structures are often representative of tunnel oxide passivated contact (TOPCon) and polycrystalline silicon on oxide (POLO) solar cells. These passivated contact technologies in silicon solar cells have experienced great strides in efficiency. However, characteristics analysis of poly‐Si/SiO2 applied to TOPCon and POLO solar cells as a carrier‐selective and passivated contact is still challenging because the silicon oxide film is very thin (<1.5 nm), poly‐Si and silicon oxide properties change during thermal treatment for passivation effects, and dopant diffusion from poly‐Si layer to the silicon wafer occurs. In this study, the interfacial analysis was performed by applying an algorithm based on the extended Shockley–Read–Hall (SRH) theory to the P‐doped poly‐Si/SiO2/c‐Si structure. Quantitative parameters of the P‐doped poly‐Si/SiO2/c‐Si interface were extracted by fitting the measured and simulated lifetime curves with algorithms, such as Dit (interface trap density) and Qf (fixed charge), from which we were able to elucidate the passivation effect of the interface. The interface analysis method using this algorithm is meaningful in that it can quantify the passivation characteristics of TOPCon with very thin silicon oxide film. The interface characteristics were also analyzed using the injection‐dependent lifetime after thermal treatment of P‐doped poly‐Si/SiO2/c‐Si samples for passivation effect. After the 850°C thermal treatment, the following best passivation effects were verified, namely, ψs = 0.248 eV, Dit = 1.0 × 1011 cm−2·eV−1, Qf = 2.4 × 1012 cm−2, and J02 = 370 pA·cm−2. Through the analysis model using carrier lifetime theory, we investigated quantitatively the passivation properties of P‐doped poly‐Si/SiO2/c‐Si.
      Through the algorithm design and presentation of the lifetime fitting method, it was possible to quantitatively analyze the passivation effects of selective contact. Thin tunnel oxide (t ~ 1.5 nm) analysis method is presented as the injection‐dependent lifetime analysis method. Through the analysis of solar cells with selective contact structure, it was possible to present the necessary analysis methods for high efficiency.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼