RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      머신러닝을 이용한 과학기술 문헌에서의 지역명 식별과 분류방법에 대한 성능 평가 = Performance Assessment of Machine Learning and Deep Learning in Regional Name Identification and Classification in Scientific Documents

      한글로보기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      Ⅰ. 서 론 Ⅱ. 관련 연구 Ⅲ. 학습 데이터셋 구축 Ⅳ. 학습 데이터셋 기반 분류 성능 실험 Ⅴ. 결 론 References

      Ⅰ. 서 론
      Ⅱ. 관련 연구
      Ⅲ. 학습 데이터셋 구축
      Ⅳ. 학습 데이터셋 기반 분류 성능 실험
      Ⅴ. 결 론
      References

      더보기

      국문 초록 (Abstract)

      생성형 AI는 최근 모든 분야에서 활용되고 있으며, 심층 데이터 분석 분야에서도 전문가를 대체할 수준으로 발전하고 있다. 그러나 과학기술 문헌에서의 지역명 식별은 학습 데이터의 부족...

      생성형 AI는 최근 모든 분야에서 활용되고 있으며, 심층 데이터 분석 분야에서도 전문가를 대체할 수준으로 발전하고 있다. 그러나 과학기술 문헌에서의 지역명 식별은 학습 데이터의 부족과 이에 따른 인공지능 모델을 적용한 사례가 전무한 실정이다. 본 연구는 Web of Science에서 한국 기관 소속 저자들의 주소 데이터를 활용해 지역명을 분류하기 위한 데이터셋을 구축하고, 머신러닝 및 딥러닝 모델의 적용을 실험 및 평가했다. 실험 결과 BERT 모델이 가장 우수한 성능을 보였으며, 광역 분류에서는 정밀도 98.41%, 재현율 98.2%, F1 점수 98.31%를 기록하였다. 시군구 분류에서는 정밀도 91.79%, 재현율 88.32%, F1 점수 89.54%를 달성하였다. 이 결과는 향후 지역 R&D 현황, 지역 간 연구자 이동성, 지역 공동 연구 등 다양한 연구의 기반 데이터로 활용이 가능하다.

      더보기

      목차 (Table of Contents)

      • Generative AI has recently been utilized across all fields, achieving expert-level advancements in deep data analysis. However, identifying regional names in scientific literature remains a challenge due to insufficient training data and limited AI application. This study developed a standardized dataset for effectively classifying regional names using address data from Korean institution-affiliated authors listed in the Web of Science. It tested and evaluated the applicability of machine learning and deep learning models in real-world problems. The BERT model showed superior performance, with a precision of 98.41%, recall of 98.2%, and F1 score of 98.31% for metropolitan areas, and a precision of 91.79%, recall of 88.32%, and F1 score of 89.54% for city classifications. These findings offer a valuable data foundation for future research on regional R&D status, researcher mobility, collaboration status, and so on.
      • Generative AI has recently been utilized across all fields, achieving expert-level advancements in deep data analysis. However, identifying regional names in scientific literature remains a challenge due to insufficient training data and limited AI application. This study developed a standardized dataset for effectively classifying regional names using address data from Korean institution-affiliated authors listed in the Web of Science. It tested and evaluated the applicability of machine learning and deep learning models in real-world problems. The BERT model showed superior performance, with a precision of 98.41%, recall of 98.2%, and F1 score of 98.31% for metropolitan areas, and a precision of 91.79%, recall of 88.32%, and F1 score of 89.54% for city classifications. These findings offer a valuable data foundation for future research on regional R&D status, researcher mobility, collaboration status, and so on.
      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼