RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Isolation of Novel CO Converting Microorganism Using Zero Valent Iron for a Bioelectrochemical System (BES)

      한글로보기

      https://www.riss.kr/link?id=A106226887

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Carbon monoxide (CO) is one of the main waste gas components of the steel industry and biomass gasification process. CO has also been highlighted as a feedstock for biological conversion to platform and valueadded chemicals. Conventional CO-converting...

      Carbon monoxide (CO) is one of the main waste gas components of the steel industry and biomass gasification process. CO has also been highlighted as a feedstock for biological conversion to platform and valueadded chemicals. Conventional CO-converting strains have drawbacks of slow growth rate and high sensitivity to oxygen as well as low conversion yield. Most CO conversion microbes harbor the Wood-Ljungdahl pathway (WLP) and CO-dehydrogenase, and the reducing equivalent is significantly limited for acetyl-CoA synthesis. In this study, electrochemically active CO converting strains were isolated and characterized using zero valent iron (ZVI) granules (Fe0) as an external electron donor. The strains isolated from ZVI augmented enrichment could also use a carbon electrode as the electron donor, and simultaneously convert CO to acetate and VFAs in a bioelectrochemical system.
      From enrichment and isolation with ZVI, both Clostridium sp.
      HN02 and Fonticella sp. HN43 were isolated and showed higher performance for acetate production from CO in BES, and electrochemical activity by cyclic voltammetry.

      더보기

      참고문헌 (Reference)

      1 Mock, J, "energy conservation associated with ethanol formation from H2and CO2 in Clostridium autoethanogenum involving electron bifurcation" 197 : 2965-2980, 2015

      2 Sahu, A. K, "Utilisation of wastewater nutrients for microalgae growth for anaerobic codigestion" 122 : 113-120, 2013

      3 Nichols, N, "Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol" 56 : 120-125, 2001

      4 Feaster, J. T, "Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes" 7 : 4822-4827, 2017

      5 Lane, D. J, "Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses" 82 : 6955-6959, 1985

      6 이재현, "Production of 1,3-Propanediol from Glucose by Recombinant Escherichia coli BL21(DE3)" 한국생물공학회 23 (23): 250-258, 2018

      7 Levy, P. F, "Organic acid production from CO2/H2and CO/H2 by mixed-culture anaerobes" 23 : 2293-2306, 1981

      8 Han, S, "NADH gene manipulation for advancing bioelectricity in Clostridium ljungdahlii microbial fuel cells" 18 : 2473-2478, 2016

      9 Tamura, K, "Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, And Maximum Parsimony Methods" 2011

      10 이혜미, "Microbial Production of Ethanol from Acetate by Engineered Ralstonia eutropha" 한국생물공학회 21 (21): 402-407, 2016

      1 Mock, J, "energy conservation associated with ethanol formation from H2and CO2 in Clostridium autoethanogenum involving electron bifurcation" 197 : 2965-2980, 2015

      2 Sahu, A. K, "Utilisation of wastewater nutrients for microalgae growth for anaerobic codigestion" 122 : 113-120, 2013

      3 Nichols, N, "Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol" 56 : 120-125, 2001

      4 Feaster, J. T, "Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes" 7 : 4822-4827, 2017

      5 Lane, D. J, "Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses" 82 : 6955-6959, 1985

      6 이재현, "Production of 1,3-Propanediol from Glucose by Recombinant Escherichia coli BL21(DE3)" 한국생물공학회 23 (23): 250-258, 2018

      7 Levy, P. F, "Organic acid production from CO2/H2and CO/H2 by mixed-culture anaerobes" 23 : 2293-2306, 1981

      8 Han, S, "NADH gene manipulation for advancing bioelectricity in Clostridium ljungdahlii microbial fuel cells" 18 : 2473-2478, 2016

      9 Tamura, K, "Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, And Maximum Parsimony Methods" 2011

      10 이혜미, "Microbial Production of Ethanol from Acetate by Engineered Ralstonia eutropha" 한국생물공학회 21 (21): 402-407, 2016

      11 Sipma, J, "Microbial CO Conversions with Applications in Synthesis Gas Purification and Bio-Desulfurization" 2008

      12 김창만, "Metabolic Flux Change in Klebsiella pneumoniae L17 by Anaerobic Respiration in Microbial Fuel Cell" 한국생물공학회 21 (21): 250-260, 2016

      13 Costa Gomes, M. F, "Low-pressure solubility and thermodynamics of solvation of carbon dioxide, ethane, and hydrogen in 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide between temperatures of 283 K and 343 K" 52 : 472-475, 2007

      14 Bajracharya, S, "Long-term operation of microbial electrosynthesis cell reducing CO2 to multi-carbon chemicals with a mixed culture avoiding methanogenesis" 113 : 26-34, 2017

      15 Clomburg, J. M, "Industrial biomanufacturing: The future of chemical production" 355 : 2017

      16 Carlson, E. D, "Heterologous Expression of the Clostridium Carboxidivorans CO Dehydrogenase Alone or Together with the Acetyl Coenzyme A Synthase Enables both Reduction of CO2 and Oxidation of CO by Clostridium acetobutylicum" 83 : e00829-e00817, 2017

      17 Najafpour, G, "Ethanol and acetate synthesis from waste gas using batch culture of Clostridium ljungdahlii" 38 : 223-228, 2006

      18 Tamura, K, "Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees" 10 : 512-526, 1993

      19 Zhu, H, "Enhancing CO−water mass transfer by functionalized MCM41 nanoparticles" 47 : 7881-7887, 2008

      20 Im, C. H, "Electrochemically enhanced microbial CO conversion to volatile fatty acids using neutral red as an electron mediator" 191 : 166-173, 2018

      21 Choi, O, "Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum" 4 : 6961-, 2014

      22 Berg, I. A, "Ecological aspects of the distribution of different autotrophic CO2 fixation pathways" 77 : 1925-1936, 2011

      23 Batlle-Vilanova, P, "Deciphering the electron transfer mechanisms for biogas upgrading to biomethane within a mixed culture biocathode" 5 : 52243-52251, 2015

      24 "DSMZ"

      25 Jourdin, L, "Critical biofilm growth throughout unmodified carbon felts allows continuous bioelectrochemical chain elongation from CO2 up to caproate at high current density" 6 : 2018

      26 Batlle-Vilanova, P, "Continuous acetate production through microbial electrosynthesis from CO2 with microbial mixed culture" 91 : 921-927, 2016

      27 Bryant, M. P, "Commentary on the Hungate technique for culture of anaerobic bacteria" 25 : 1324-1328, 1972

      28 Abrini, J, "Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide" 1994

      29 Nielsen, D. U, "Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals" 1 : 244-254, 2018

      30 Geelhoed, J. S, "Carboxydotrophic growth of Geobacter sulfurreducens" 100 : 997-1007, 2016

      31 Bajracharya, S, "Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode" 195 : 14-24, 2015

      32 임채호, "Biologically activated graphite fiber electrode for autotrophic acetate production from CO2 in a bioelectrochemical system" 한국탄소학회 20 : 76-80, 2016

      33 Raghavulu, S. V, "Bioaugmentation of an electrochemically active strain to enhance the electron discharge of mixed culture: process evaluation through electro-kinetic analysis" 2 : 677-688, 2012

      34 Kim, C, "Anodic electro-fermentation of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae L17 in a bioelectrochemical system" 10 : 199-, 2017

      35 Humphreys, C. M, "Advances in metabolic engineering in the microbial production of fuels and chemicals from C1 gas" 50 : 174-181, 2018

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2003-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2001-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.14 0.13 0.75
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.57 0.46 0.239 0.02
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼