<P>The major goal of IEEE 802.11ac is to provide very high throughput (VHT) performance while at the same time guaranteeing backward compatibility. To achieve this goal, 802.11ac adopts the channel bonding technique that makes use of multiple 20...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107741134
2015
-
SCOPUS,SCIE
학술저널
458-472(15쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
<P>The major goal of IEEE 802.11ac is to provide very high throughput (VHT) performance while at the same time guaranteeing backward compatibility. To achieve this goal, 802.11ac adopts the channel bonding technique that makes use of multiple 20...
<P>The major goal of IEEE 802.11ac is to provide very high throughput (VHT) performance while at the same time guaranteeing backward compatibility. To achieve this goal, 802.11ac adopts the channel bonding technique that makes use of multiple 20 MHz channels in 5 GHz band. Due to the heterogeneity of bandwidth that each device exploits, and the fixed total transmission power in the standards, a problem called `Hidden Channel' arises. In this paper, we first analyze the problem and show how the contention parameters and transmission time affect collision probability and fairness in some deployment scenarios. Then, we propose a heuristic channel allocation algorithm that aims to avoid such problematic situations effectively. Through simulations, we demonstrate that our proposed channel allocation algorithm lowers the packet error rate (PER) compared to uncoordinated and received signal strength indicator(RSSI) based allocation schemes and increases the network-wide throughput as well as the throughput of a station that experiences poor performance. This implies improved fairness performance among transmission pairs with various channel bandwidths.</P>
Max Contribution: An Online Approximation of Optimal Resource Allocation in Delay Tolerant Networks