RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS SCIE

      First-principles investigation of the complex of 2, 5- furandicarbonitrile-Al-doped graphene as a possible electrode material for Na-ion batteries

      한글로보기

      https://www.riss.kr/link?id=A104320773

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The current article carried out density functional theory calculations to investigate the 2, 5- furandicarbonitrile (FUDCN) capability for storing Na atoms. The results indicated that this organic molecule could adsorb two sodium atoms with 454 mAh g1...

      The current article carried out density functional theory calculations to investigate the 2, 5- furandicarbonitrile (FUDCN) capability for storing Na atoms. The results indicated that this organic molecule could adsorb two sodium atoms with 454 mAh g1 value of specific theoretical capacity. To assure high conductivity and stability of this molecule as an electrode material for Na-ion battery, Aldoped graphene was considered as a suitable substrate with a strong binding energy (1.87 eV) to anchor the FUDCN molecule. An interesting result was a little dependency between binding energy values and the number of the inserted Na atoms, which means that FUDCN-Al-Graphene could adsorb more Na atoms in comparison to FUDCN molecule. The high sodium storage capability, suitable voltage range, easy diffusion of sodium atoms, along with high conductivity and stability are some advantages of application of this structure as anode electrode material in Na-ion batteries.

      더보기

      참고문헌 (Reference)

      1 L. Shi, 4 : 16377-16382, 2016

      2 T. Zhang, "Understanding electrode materials of rechargeable lithium batteries via DFT calculations" 23 : 256-272, 2013

      3 Z. Song, "Towards sustainable and versatile energy storage devices: an overview of organic electrode materials" 6 : 2280-2301, 2013

      4 G. Kaur, "Theoretical investigation of structures and energetics of sodium ada- tom and its dimer on graphene: DFT study" 74 : 87-92, 2015

      5 R. Zeng, "Synthesis and properties of a lithium-organic coordination compound as lithium-inserted material for lithium ion batteries" 12 : 1253-1256, 2010

      6 G. Kaur, "Structures and energetics of lithium adatom and its dimer on graphene-a DFT study" 334 : 19-23, 2015

      7 S. Renault, "Stability of organic Na-ion battery electrode materials: the case of disodium pyromellitic diimidate" 45 : 52-55, 2014

      8 Y. Wang, "Sn@ CNT and Sn@ C@ CNT nanostructures for superior reversible lithium ion storage" 21 : 3210-3215, 2009

      9 C. Luo, "Roll-to-roll fabrication of organic nanorod electrodes for sodium ion batteries" 13 : 537-545, 2015

      10 Y. Hanyu, "Rechargeable quasi-solid state lithium battery with organic crystalline cathode" 2 : 1-6, 2012

      1 L. Shi, 4 : 16377-16382, 2016

      2 T. Zhang, "Understanding electrode materials of rechargeable lithium batteries via DFT calculations" 23 : 256-272, 2013

      3 Z. Song, "Towards sustainable and versatile energy storage devices: an overview of organic electrode materials" 6 : 2280-2301, 2013

      4 G. Kaur, "Theoretical investigation of structures and energetics of sodium ada- tom and its dimer on graphene: DFT study" 74 : 87-92, 2015

      5 R. Zeng, "Synthesis and properties of a lithium-organic coordination compound as lithium-inserted material for lithium ion batteries" 12 : 1253-1256, 2010

      6 G. Kaur, "Structures and energetics of lithium adatom and its dimer on graphene-a DFT study" 334 : 19-23, 2015

      7 S. Renault, "Stability of organic Na-ion battery electrode materials: the case of disodium pyromellitic diimidate" 45 : 52-55, 2014

      8 Y. Wang, "Sn@ CNT and Sn@ C@ CNT nanostructures for superior reversible lithium ion storage" 21 : 3210-3215, 2009

      9 C. Luo, "Roll-to-roll fabrication of organic nanorod electrodes for sodium ion batteries" 13 : 537-545, 2015

      10 Y. Hanyu, "Rechargeable quasi-solid state lithium battery with organic crystalline cathode" 2 : 1-6, 2012

      11 P. Giannozzi, "QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials" 21 : 395502-395521, 2009

      12 T. Nokami, "Polymer-bound pyrene-4, 5, 9, 10-tetraone for fast-charge and-discharge lithium-ion batteries with high capacity" 134 : 19694-19700, 2012

      13 M. S. Whittingham, "Materials challenges facing electrical energy storage" 33 : 411-419, 2008

      14 M. J. Momeni, "Maleic anhydride as a promising anode material for Na-Ion and Li-Ion batteries with using a proper substrate: a first principles study" 124 : 166-172, 2016

      15 B. Peng, "Lithium transport at silicon thin film: barrier for high-rate capability anode" 133 : 34701-34705, 2010

      16 Y. Chen, "Lithium and sodium storage on tetracyanoethylene (TCNE) and TCNE-(doped)-graphene complexes: a computational study" 156 : 180-187, 2015

      17 A. Ramos, "Is single layer graphene a promising anode for sodium-ion batteries?" 178 : 392-397, 2015

      18 C. Karlsson, "Impact of linker in polypyrrole/quinone conducting redox polymers" 5 : 11309-11316, 2015

      19 M. Yao, "High-capacity organic positive-electrode material based on a benzoquinone derivative for use in rechargeable lithium batteries" 195 : 8336-8340, 2010

      20 J. P. Perdew, "Generalized gradient approximation made simple" 77 : 3865-3869, 1996

      21 G. Guo, "First-Principles study of phosphorene and graphene heterostructure as anode materials for rechargeable Li Batteries" 6 : 5002-5008, 2015

      22 Y. Chen, "First-Principles study of an ethoxycarbonyl-based organic electrode material of lithium battery" 118 : 21813-21818, 2014

      23 M. Mousavi-Khoshdel, "First-Principles calculation of quantum capacitance of codoped graphenes as supercapacitor electrodes" 119 : 26290-26295, 2015

      24 C. Wang, "Extended p-conjugated system for fast-charge and -discharge sodium-ion batteries" 137 : 3124-3130, 2015

      25 M. A. Sk, "Exploring the sodium storage mechanism in disodium terephthalate as anode for organic battery using density-functional theory calculations" 324 : 572-581, 2016

      26 E. Yang, "Exploring the possibilities of twodimensional sodium batteries" 17 : 5000-5005, 2015

      27 S. M. Mousavi-Khoshdel, "Exploring the effect of functionalization of graphene on the quantum capacitance by first principle study" 89 : 148-160, 2015

      28 W. Walker, "Ethoxycarbonyl-based organic electrode for Li-batteries" 132 : 6517-6523, 2010

      29 B. Dunn, "Electrical energy storage for the grid: a battery of choices" 334 : 928-935, 2011

      30 H. Wu, "Designing nanostructured Si anodes for high energy lithium ion batteries" 7 : 414-429, 2012

      31 M. Yao, "Crystalline polycyclic quinone derivatives as organic positive-electrode materials for use in rechargeable lithium batteries" 177 : 483-487, 2012

      32 M. Armand, "Conjugated dicarboxylate anodes for Li-ion batteries" 8 : 120-125, 2009

      33 F. Legrain, "Comparison of alpha- and betatin for lithium, sodium, and magnesium storage: an ab initio study including phonon contributions" 143 : 204701-204716, 2015

      34 Y. Chen, "Comparative computational study of lithium and sodium insertion in van der Waals and covalent tetracyanoethylene ( TCNE ) -based crystals as promising materials for organic lithium and sodium ion batteries" 18 : 8874-8880, 2016

      35 A. Darwiche, "Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism" 134 : 20805-20811, 2012

      36 F. Legrain, "Amorphous (Glassy) carbon, a promising material for sodium ion battery anodes: a combined first-principles and experimental study" 119 : 13496-13501, 2015

      37 L. H. Yao, "Adsorption of Na on intrinsic, B-doped, N-doped and vacancy graphenes: a first-principles study" 85 : 179-185, 2014

      38 M. Mortazavi, "Ab initio characterization of layered MoS2 as anode for sodium-ion batteries" 268 : 279-286, 2014

      39 O. Malyi, "A computational study of the insertion of Li, Na, and Mg atoms into Si(111) nanosheets" 2 : 1149-1157, 2013

      40 O. I. Malyi, "A comparative computational study of structures, diffusion, and dopant interactions between li and na insertion into Si" 6 : 027301-027303, 2013

      41 P. Barpanda, "A 3.8-V earthabundant sodium battery electrode" 5 : 1-8, 2014

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2008-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2007-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.8 0.18 1.17
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.92 0.77 0.297 0.1
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼