- Abstract
- 1. 서론
- 2. GloSea6 기후예측시스템 운영체계 및 개선
- 3. GloSea6 모델의 개선
- 4. GloSea6 모의 특성 분석
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107878312
2021
Korean
453
KCI등재,ESCI
학술저널
341-359(19쪽)
1
0
상세조회0
다운로드목차 (Table of Contents)
참고문헌 (Reference)
1 이소정, "기상청 기후예측시스템(GloSea5)의 여름철 동아시아 몬순 지수 예측 성능 평가" 한국기상학회 30 (30): 293-309, 2020
2 이효미, "고해상도 기후예측시스템의 표층해류 예측성능 평가" 한국해양과학기술원 40 (40): 99-114, 2018
3 Warren J. Tennant, "Using a Stochastic Kinetic Energy Backscatter Scheme to Improve MOGREPS Probabilistic Forecast Skill" American Meteorological Society 139 (139): 1190-1206, 2011
4 Andrew Brown, "Unified Modeling and Prediction of Weather and Climate: A 25-Year Journey" American Meteorological Society 93 (93): 1865-1877, 2012
5 David Storkey, "UK Global Ocean GO6 and GO7: a traceable hierarchy of model resolutions" Copernicus GmbH 11 (11): 3187-3213, 2018
6 Simmons, H. L., "Tidally driven mixing in a numerical model of the ocean general circulation" 6 : 245-263, 2004
7 Jeff K. Ridley, "The sea ice model component of HadGEM3-GC3.1" Copernicus GmbH 11 (11): 713-723, 2018
8 Lock, A. P., "The numerical representation of entrainment in parameterizations of boundary layer turbulent mixing" 129 : 1148-1163, 2001
9 Bowler, N. E., "The local ETKF and SKEB: upgrades to the MOGREPS short-range ensemble prediction system" 135 : 767-776, 2009
10 Baran, A. J., "The impact of two coupled cirrus microphysics-radiation parameterizations on the temperature and specific humidity biases in the tropical tropopause layer in a climate model" 29 : 5299-5316, 2016
1 이소정, "기상청 기후예측시스템(GloSea5)의 여름철 동아시아 몬순 지수 예측 성능 평가" 한국기상학회 30 (30): 293-309, 2020
2 이효미, "고해상도 기후예측시스템의 표층해류 예측성능 평가" 한국해양과학기술원 40 (40): 99-114, 2018
3 Warren J. Tennant, "Using a Stochastic Kinetic Energy Backscatter Scheme to Improve MOGREPS Probabilistic Forecast Skill" American Meteorological Society 139 (139): 1190-1206, 2011
4 Andrew Brown, "Unified Modeling and Prediction of Weather and Climate: A 25-Year Journey" American Meteorological Society 93 (93): 1865-1877, 2012
5 David Storkey, "UK Global Ocean GO6 and GO7: a traceable hierarchy of model resolutions" Copernicus GmbH 11 (11): 3187-3213, 2018
6 Simmons, H. L., "Tidally driven mixing in a numerical model of the ocean general circulation" 6 : 245-263, 2004
7 Jeff K. Ridley, "The sea ice model component of HadGEM3-GC3.1" Copernicus GmbH 11 (11): 713-723, 2018
8 Lock, A. P., "The numerical representation of entrainment in parameterizations of boundary layer turbulent mixing" 129 : 1148-1163, 2001
9 Bowler, N. E., "The local ETKF and SKEB: upgrades to the MOGREPS short-range ensemble prediction system" 135 : 767-776, 2009
10 Baran, A. J., "The impact of two coupled cirrus microphysics-radiation parameterizations on the temperature and specific humidity biases in the tropical tropopause layer in a climate model" 29 : 5299-5316, 2016
11 Gregory, D., "The effect of convective scale downdraughts upon NWP and climate simulations" Amer. Meteor. Soc 122-123, 1991
12 S. Valcke, "The OASIS3 coupler: a European climate modelling community software" Copernicus GmbH 6 (6): 373-388, 2013
13 Larson, J., "The Model Coupling Toolkit: A new fortran90 toolkit for building multiphysics parallel coupled models" 19 : 277-292, 2005
14 Walters, D. N., "The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations" 12 : 1909-1963, 2019
15 D. N. Walters, "The Met Office Unified Model Global Atmosphere 3.0/3.1 and JULES Global Land 3.0/3.1 configurations" Copernicus GmbH 4 (4): 919-941, 2011
16 K. D. Williams, "The Met Office Global Coupled model 2.0 (GC2) configuration" Copernicus GmbH 8 (8): 1509-1524, 2015
17 K. D. Williams, "The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) Configurations" American Geophysical Union (AGU) 10 (10): 357-380, 2018
18 M. J. Best, "The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes" Copernicus GmbH 4 (4): 677-699, 2011
19 Shinya KOBAYASHI, "The JRA-55 Reanalysis: General Specifications and Basic Characteristics" Meteorological Society of Japan 93 (93): 5-48, 2015
20 Daniel A. Paolino, "The Impact of Land Surface and Atmospheric Initialization on Seasonal Forecasts with CCSM" American Meteorological Society 25 (25): 1007-1021, 2012
21 L.S. Rothman, "The HITRAN2012 molecular spectroscopic database" Elsevier BV 130 : 4-50, 2013
22 Robert Adler, "The Global Precipitation Climatology Project (GPCP) Monthly Analysis (New Version 2.3) and a Review of 2017 Global Precipitation" MDPI AG 9 (9): 138-, 2018
23 D. P. Dee, "The ERA-Interim reanalysis: configuration and performance of the data assimilation system" Wiley 137 (137): 553-597, 2011
24 Edwards, J. M., "Studies with a flexible new radiation code. I: Choosing a configuration for a largescale model" 122 : 689-719, 1996
25 K. B. Rodgers, "Strong sensitivity of Southern Ocean carbon uptake and nutrient cycling to wind stirring" Copernicus GmbH 11 (11): 4077-4098, 2014
26 I. A. Boutle, "Spatial variability of liquid cloud and rain: observations and microphysical effects" Wiley 140 (140): 583-594, 2014
27 Guillaume Roullet, "Salt conservation, free surface, and varying levels: A new formulation for ocean general circulation models" American Geophysical Union (AGU) 105 (105): 23927-23942, 2000
28 Edson, J. B., "Review of air-sea transfer processes" European Centre for Medium-Range Weather Forecasts 7-24, 2009
29 Alistair Adcroft, "Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models" Elsevier BV 7 (7): 269-284, 2004
30 P. G. Hill, "Reducing noise associated with the Monte Carlo Independent Column Approximation for weather forecasting models" Wiley 137 (137): 219-228, 2011
31 E. W. Blockley, "Recent development of the Met Office operational ocean forecasting system: an overview and assessment of the new Global FOAM forecasts" Copernicus GmbH 7 (7): 2613-2638, 2014
32 Damian R. Wilson, "PC2: A prognostic cloud fraction and condensation scheme. II: Climate model simulations" Wiley 134 (134): 2109-2125, 2008
33 Damian R. Wilson, "PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description" Wiley 134 (134): 2093-2107, 2008
34 M. Zerroukat, "On the monotonic and conservative transport on overset/Yin–Yang grids" Elsevier BV 302 : 285-299, 2015
35 UK Met Office, "OSTIA L4 SST Analysis. Ver. 1.0"
36 R. Marsh, "NEMO–ICB (v1.0): interactive icebergs in the NEMO ocean model globally configured at eddy-permitting resolution" Copernicus GmbH 8 (8): 1547-1562, 2015
37 Mogensen, K. S., "NEMOVAR: A variational data assimilation system for the NEMO ocean model" 17-21, 2009
38 Madec, G., "NEMO ocean engine" 300-, 2008
39 Bigg, G. R., "Modelling the dynamics and thermodynamics of icebergs" 26 : 113-135, 1997
40 K. J. Pearson, "Modelling the diurnal cycle of tropical convection across the ‘grey zone’" Wiley 140 (140): 491-499, 2014
41 Bernie, D. J., "Modeling diurnal and intraseasonal variability of the ocean mixed layer" 18 : 1190-1202, 2005
42 P. R. Field, "Mixed-phase clouds in a turbulent environment. Part 2: Analytic treatment" Wiley 140 (140): 870-880, 2014
43 I. A. Boutle, "Microphysical controls on the stratocumulus topped boundary-layer structure during VOCALS-REx" Copernicus GmbH 12 (12): 2849-2863, 2012
44 Daniela Flocco, "Incorporation of a physically based melt pond scheme into the sea ice component of a climate model" American Geophysical Union (AGU) 115 (115): 2010
45 Claudio Sanchez, "Improved stochastic physics schemes for global weather and climate models" Wiley 142 (142): 147-159, 2016
46 Chloé Prodhomme, "Impact of land-surface initialization on sub-seasonal to seasonal forecasts over Europe" Springer Science and Business Media LLC 47 (47): 919-935, 2016
47 Scaife, A. A., "Impact of a spectral gravity wave parameterization on the stratosphere in the Met Office Unified Model" 59 : 1473-1489, 2002
48 Annette L. Hirsch, "Impact of Land Surface Initialization Approach on Subseasonal Forecast Skill: A Regional Analysis in the Southern Hemisphere" American Meteorological Society 15 (15): 300-319, 2014
49 Xie, P., "Global precipitation: A 17- year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs" 78 : 2539-2558, 1997
50 C. MacLachlan, "Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system" Wiley 141 (141): 1072-1084, 2015
51 임소민, "GloSea5의 과거기후 모의자료에서 나타난 El Niño와 관련된 동아시아 강수 및 기온 예측성능" 한국기상학회 28 (28): 37-51, 2018
52 김도경, "GloSea5 북반구 대기 원격상관패턴의 1~6주 주별 예측성능 검증" 한국기상학회 29 (29): 295-309, 2019
53 Pierre Mathiot, "Explicit representation and parametrised impacts of under ice shelf seas in the <i>z</i><sup>∗</sup> coordinate ocean model NEMO 3.6" Copernicus GmbH 10 (10): 2849-2874, 2017
54 Hersbach, H., "ERA5 reanalysis is in production" 7-, 2016
55 Large, W. G., "Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies" NCAR 105-, 2004
56 Arakawa, A., "Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I" 1 : 119-143, 1966
57 Grant, A. L. M., "Cloud-base fluxes in the cumuluscapped boundary layer" 127 : 407-421, 2001
58 Hunke, E. C., "CICE: The Los Alamos sea ice model documentation and software user’s manual, version 4.1" Los Alamos National Laboratory 76-, 2010
59 Warner, C. D., "An ultrasimple spectral parameterization for nonorographic gravity waves" 58 : 1837-1857, 2001
60 A. Hollingsworth, "An internal symmetric computational instability" Wiley 109 (109): 417-428, 1983
61 Wood, N., "An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations" 140 : 1505-1520, 2014
62 C. M. Bitz, "An energy-conserving thermodynamic model of sea ice" American Geophysical Union (AGU) 104 (104): 15669-15677, 1999
63 S. H. Derbyshire, "Adaptive detrainment in a convective parametrization" Wiley 137 (137): 1856-1871, 2011
64 Gaspar, P., "A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station Papa and longterm upper ocean study site" 95 : 16179-16193, 1990
65 Smith, R. N. B., "A scheme for predicting layer clouds and their water content in a general circulation model" 116 : 435-460, 1990
66 P. G. Hill, "A regime‐dependent parametrization of subgrid‐scale cloud water content variability" Wiley 141 (141): 1975-1986, 2015
67 Lott, F., "A new subgrid-scale orographic drag parametrization: Its formulation and testing" 123 : 101-127, 1997
68 Zhonghai Jin, "A new parameterization of spectral and broadband ocean surface albedo" The Optical Society 19 (19): 26429-26443, 2011
69 Khairoutdinov, M., "A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus" 128 : 229-243, 2000
70 Lock, A. P., "A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests" 128 : 3187-3199, 2000
71 Wilson, D. R., "A microphysically based precipitation scheme for the UK Meteorological Office Unified Model" 125 : 1607-1636, 1999
72 Beckmann, A., "A method for improved representation of dense water spreading over topography in geopotential-coordinate models" 27 : 581-591, 1997
73 Gregory, D., "A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure" 118 : 1483-1506, 1990
한국형모델의 신규 GNSS RO 자료 활용과 품질검사 개선에 관한 연구
서해상 PM2.5 내 탄소성분 및 유기성분의 화학적 특성
관측시스템 실험을 통한 한반도 근해 Argo 플로트 관측자료의 자료동화 효과 평가
도시 캐노피 층 기온과 상대습도의 일변화에 관한 수치 모의
학술지 이력
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2026 | 평가예정 | 재인증평가 신청대상 (재인증) | |
2020-01-01 | 평가 | 등재학술지 유지 (재인증) | |
2017-01-01 | 평가 | 등재학술지 유지 (계속평가) | |
2013-01-01 | 평가 | 등재 1차 FAIL (등재유지) | |
2010-01-01 | 평가 | 등재학술지 선정 (등재후보2차) | |
2009-01-01 | 평가 | 등재후보 1차 PASS (등재후보1차) | |
2008-01-01 | 평가 | 등재후보 1차 FAIL (등재후보1차) | |
2006-01-01 | 평가 | 등재후보학술지 선정 (신규평가) |
학술지 인용정보
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 0.64 | 0.64 | 0.57 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
0.55 | 0.55 | 0.864 | 0.1 |