RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Heat transfer analysis of convective and microwave drying of dragon fruit

      한글로보기

      https://www.riss.kr/link?id=O111702356

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2021년

      • 작성언어

        -

      • Print ISSN

        0145-8876

      • Online ISSN

        1745-4530

      • 등재정보

        SCIE;SCOPUS

      • 자료형태

        학술저널

      • 수록면

        n/a-n/a   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 소장기관
      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 계명대학교 동산도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The purpose of this study was to develop a predictive three‐dimensional analytical model for predicting the temperature profile during microwave and convective drying of dragon fruit. A combined electromagnetic (Maxwell's equation) and heat transfer model was used for modeling of microwave drying. This heat transfer modeling is applicable to describe the thermal dissipation during the microwave and convective drying of agricultural produces. In this process, the dragon fruit cube of 15 mm was dried at a microwave power of 200, 400, and 600 W during the microwave drying process and hot air temperature of 60°C during the convective drying process. During microwave drying, the core or center temperature was maximum compared with the temperature at the surface of the dragon fruit cube. The predicted temperature at the center of the dragon fruit cube exposed to the microwave power of 200, 400, and 600 W for 60 s of drying time was 34.67, 44.34, and 54.02°C, respectively. In convective drying, the temperature at the edges was higher than the temperature at the center point of the dragon fruit cube. During convective drying, the fruit sample attained the maximum temperature of 60°C after being exposed to hot air for 8 min. The RMSE and χ2 values between experimental and model projected values were less than 0.988 and 0.029 in microwave drying and less than 0.891 and 0.018 in convective drying, indicating that the model projected values were in good agreement with the experimental values.
      The importance of thermal processes in deciding the safety and quality of food products is emergent. This model can predict food product temperature distribution during the hot air drying and microwave drying of Dragon fruit cubes. The economy of the drying process is often influenced by the nature and operation of these processes and hence modeling of the drying process is a crucial factor for the industry. These results can be used to quantify heat and moisture distribution, as well as to monitor the drying process of fruits and vegetables, saving energy and time.
      For the heat transfer analysis of convective and microwave drying of dragon fruit.
      번역하기

      The purpose of this study was to develop a predictive three‐dimensional analytical model for predicting the temperature profile during microwave and convective drying of dragon fruit. A combined electromagnetic (Maxwell's equation) and heat transfer...

      The purpose of this study was to develop a predictive three‐dimensional analytical model for predicting the temperature profile during microwave and convective drying of dragon fruit. A combined electromagnetic (Maxwell's equation) and heat transfer model was used for modeling of microwave drying. This heat transfer modeling is applicable to describe the thermal dissipation during the microwave and convective drying of agricultural produces. In this process, the dragon fruit cube of 15 mm was dried at a microwave power of 200, 400, and 600 W during the microwave drying process and hot air temperature of 60°C during the convective drying process. During microwave drying, the core or center temperature was maximum compared with the temperature at the surface of the dragon fruit cube. The predicted temperature at the center of the dragon fruit cube exposed to the microwave power of 200, 400, and 600 W for 60 s of drying time was 34.67, 44.34, and 54.02°C, respectively. In convective drying, the temperature at the edges was higher than the temperature at the center point of the dragon fruit cube. During convective drying, the fruit sample attained the maximum temperature of 60°C after being exposed to hot air for 8 min. The RMSE and χ2 values between experimental and model projected values were less than 0.988 and 0.029 in microwave drying and less than 0.891 and 0.018 in convective drying, indicating that the model projected values were in good agreement with the experimental values.
      The importance of thermal processes in deciding the safety and quality of food products is emergent. This model can predict food product temperature distribution during the hot air drying and microwave drying of Dragon fruit cubes. The economy of the drying process is often influenced by the nature and operation of these processes and hence modeling of the drying process is a crucial factor for the industry. These results can be used to quantify heat and moisture distribution, as well as to monitor the drying process of fruits and vegetables, saving energy and time.
      For the heat transfer analysis of convective and microwave drying of dragon fruit.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼