RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      등열량 고지방식과 지구성 운동트레이닝이 흰쥐의 골격근 내 미토콘드리아 생합성과 지구성운동 능력에 미치는 영향 = The Effects of Isocaloric High Fat Diet and Endurance Exercise Training on mitochondrial biogenesis and Endurance Exercise Capacity of male Wistar rats

      한글로보기

      https://www.riss.kr/link?id=A106553331

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      본 연구의 목적은 등열량 고지방식과 지구성 운동이 미토콘드리아 생합성과 지구성 운동능력에 미치는 영향을 규명하는 것이다. 4주령의 male Wistar rat 60마리를 대상으로 4집단(Chow, HF-총열량...

      본 연구의 목적은 등열량 고지방식과 지구성 운동이 미토콘드리아 생합성과 지구성 운동능력에 미치는 영향을 규명하는 것이다. 4주령의 male Wistar rat 60마리를 대상으로 4집단(Chow, HF-총열량의 50%를 지방으로 공급, Ex-트레드밀 달리기, 경사도 8%, 23 m/min, 120분/일, 5일/주, FEx)으로 무선 배정한 다음 총 4주간의 처치기간을 거쳐 지구성 운동능력과 골격근 내 변화를 관찰하였다. 연구결과 4주간의 등열량 고지방식 또는 중강도의 지구성 운동은 체중과 체지방량에 유의한 영향을 미치지 않았고, 등열량 고지방식은 골격근 내 포도당 이동률을 감소시키지 않았다. 또한 등열량 고지방식과 지구성운동 복합처치는 골격근 내 전자전달계 단백질 수준을 증가시키고, 근글리코겐 함량이 운동집단에 비해 50% 감소된 수준에서도 지구성 운동능력은 동일한 수준으로 나타났다. 이러한 결과를 통해 4주간의 등열량 고지방식은 골격근 내 인슐린 저항성을 발생시키지 않으며, 지구성운동과 복합처치 할 경우 미토콘드리아 생합성을 증가시키고 지구성 운동능력을 높이는 것으로 생각된다.

      더보기

      다국어 초록 (Multilingual Abstract)

      The purpose of this study was to examine the effects of isocaloric high fat diet and endurance exercise training on mitochondrial biogenesis, endurance exercise capacity. The rats were randomly assigned into 4 groups; Chow, HF(50% of calories from fat...

      The purpose of this study was to examine the effects of isocaloric high fat diet and endurance exercise training on mitochondrial biogenesis, endurance exercise capacity. The rats were randomly assigned into 4 groups; Chow, HF(50% of calories from fat), Ex(treadmill running, slop 8%, 23 m/min, 120 min/day, 5 d/week), FEx. 4-week of high fat diet and endurance exercise training did not change body weight and body fat. Further the level of insulin-stimulated glucose transport rate in soleus muscle was not affected by isocaloric high fat diet. Although either isocaloric high fat diet or endurance exercise alone did not change on mitochondrial biogenesis marker, isocaloric high fat diet with endurance exercise increase level of mitochondrial biogenesis marker. Despite muscle glycogen contents were significantly decreased in FEx, endurance exercise capacity was not decreased. With these results, 4-week isocaloric high fat did not cause insulin resistance in skeletal muscle, and when combined with endurance exercise training increases mitochondrial biogenesis and endurance exercise capacity.

      더보기

      참고문헌 (Reference)

      1 Hegarty, B. D., "The role of intramuscular lipid in insulin resistance" 178 : 373-383, 2003

      2 Phinney, S. D., "The human metabolic response to chronic ketosis without caloric restriction : preservation of submaximal exercise capability with reduced carbohydrate oxidation" 32 (32): 769-776, 1983

      3 Dumke, C. L., "Successive bouts of cycling stimulates genes associated with mitochondrial biogenesis" 107 (107): 419-427, 2009

      4 Goodpaster, B. H., "Skeletal muscle lipid content and insulin resistance : evidence for a paradox in endurance-trained athletes" 86 : 5755-5761, 2001

      5 Sahlin, K., "Resynthesis of creatine phosphate in human muscle after exercise in relation to intramuscular pH and availability of oxygen" 39 : 551-558, 1979

      6 Wang, Y. X., "Regulation of muscle fiber type and running endurance by PPARdelta" 2 : 1532-1539, 2004

      7 Holloszy, J. O., "Regulation by exercise of skeletal muscle content of mitochondria and GLUT4" 59 : 5-18, 2008

      8 Garcia-Roves, P., "Raising plasma fatty acid concentration induces increased biogenesis of mitochondria in skeletal muscle" 104 : 10709-10713, 2007

      9 Lowry, O. H., "Protein measurement with the Folin phenol reagent" 193 : 265-275, 1951

      10 Luquet, S., "Peroxisome proliferator-activated receptor delta controls muscle development and oxidative capability" 17 : 2299-2301, 2003

      1 Hegarty, B. D., "The role of intramuscular lipid in insulin resistance" 178 : 373-383, 2003

      2 Phinney, S. D., "The human metabolic response to chronic ketosis without caloric restriction : preservation of submaximal exercise capability with reduced carbohydrate oxidation" 32 (32): 769-776, 1983

      3 Dumke, C. L., "Successive bouts of cycling stimulates genes associated with mitochondrial biogenesis" 107 (107): 419-427, 2009

      4 Goodpaster, B. H., "Skeletal muscle lipid content and insulin resistance : evidence for a paradox in endurance-trained athletes" 86 : 5755-5761, 2001

      5 Sahlin, K., "Resynthesis of creatine phosphate in human muscle after exercise in relation to intramuscular pH and availability of oxygen" 39 : 551-558, 1979

      6 Wang, Y. X., "Regulation of muscle fiber type and running endurance by PPARdelta" 2 : 1532-1539, 2004

      7 Holloszy, J. O., "Regulation by exercise of skeletal muscle content of mitochondria and GLUT4" 59 : 5-18, 2008

      8 Garcia-Roves, P., "Raising plasma fatty acid concentration induces increased biogenesis of mitochondria in skeletal muscle" 104 : 10709-10713, 2007

      9 Lowry, O. H., "Protein measurement with the Folin phenol reagent" 193 : 265-275, 1951

      10 Luquet, S., "Peroxisome proliferator-activated receptor delta controls muscle development and oxidative capability" 17 : 2299-2301, 2003

      11 Jansson, E., "Muscle enzyme adaptation to diet in man" 299 : 1981

      12 Nemeth, P. M., "Metabolic response to a high-fat diet in neonatal and adult rat muscle" 262 (262): 282-286, 1992

      13 Gómez-Pérez, Y., "Long-term high-fat-diet feeding induces skeletal muscle mitochondrial biogenesis in rats in a sex-dependent and muscle-type specific manner" 21 : 9-15, 2012

      14 정수련, "Isocaloric high-fat diet와 지구성 운동이 인슐린 저항성과 미토콘드리아 생합성에 미치는 영향" 한국체육학회 51 (51): 353-362, 2012

      15 Perseghin, G., "Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans : a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents" 48 : 1600-1606, 1999

      16 van Loon, L. J., "Intramyocellular lipid content in type 2 diabetes patients compared with overweight sedentary men and highly trained endurance athletes" 287 : 558-565, 2004

      17 Han, D. H., "Insulin resistance of muscle glucose transport in rats fed a high-fat diet : a reevaluation" 46 (46): 1761-1767, 1997

      18 Caro, J. F., "Insulin receptor kinase in human skeletal muscle from obese subjects with and without noninsulin dependent diabetes" 79 : 1330-1337, 1987

      19 Boyadjiev, N., "Increase of aerobic capacity by submaximal training and high-fat diets" 38 (38): 49-59, 1996

      20 Kim, J. Y., "High-fat diet-induced muscle insulin resistance: relationship to visceral fat mass" 279 (279): 2057-2065, 2000

      21 Hancock, C. R., "High fat diets cause insulin resistance despite an increase in muscle mitochondria" 105 : 7815-7820, 2008

      22 Griffin, M. E., "Free fatty acid-induced insulin resistance is associated with activation of protein kinase C-and alterations in the insulin signaling cascade" 48 : 1270-1274, 1999

      23 Steffansson, V, "Eskimo longevity in Northern Alaska" 127 (127): 16-19, 1958

      24 Johnson, R. E., "Environment and Food Intake in Man" 105 (105): 378-379, 1947

      25 Lanza, I. R., "Endurance exercise as a countermeasure for aging" 57 (57): 2933-2942, 2008

      26 Boden, G., "Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects" 50 : 1612-1617, 2001

      27 Lara-Castro, C., "Diet, insulin resistance, and obesity : zoning in on data for Atkins dieters living in South Beach" 89 (89): 4197-4205, 2004

      28 Wang, Y., "Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men" 81 : 555-563, 2005

      29 Phinney, S. D., "Capacity for moderate exercise in obese subjects after adaptation to a hypocaloric, ketogenic diet" 66 (66): 1152-1161, 1980

      30 Holloszy, J. O., "Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle" 242 (242): 2278-2282, 1967

      31 Jacob, S., "Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects" 48 : 1113-1119, 1999

      32 Caffin, F., "Altered skeletal muscle mitochondrial biogenesis but improved endurance capacity in trained OPA1-deficient mice" 14 : 2013

      33 Simi, B., "Additive effects of training and high-fat diet on energy metabolism during exercise" 71 (71): 197-203, 1991

      34 Miller, W. C., "Adaptations to a high-fat diet that increase exercise endurance in male rats" 56 (56): 78-83, 1984

      35 Young, D. A., "Activation of glucose transport in muscle by prolonged exposure to insulin: effects of glucose and insulin concentration" 261 : 16049-16053, 1986

      36 Passonneau, J. V., "A comparison of three methods of glycogen measurement in tissues" 60 (60): 405-412, 1974

      37 Hannon, R. R., "A case of osthitis fibrosa cystica(osteomalacia)with evidance of hyperactivity of the para-thyroid bodies metabolic study I" 8 (8): 215-227, 1930

      38 Goodyear, L. J., "2. Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation, and phosphati--dylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects" 95 : 2195-2204, 1995

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 계속평가 신청대상 (등재유지)
      2017-01-01 평가 우수등재학술지 선정 (계속평가)
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2003-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2002-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2001-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.34 1.34 1.4
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      1.44 1.45 1.24 0.33
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼