RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE

      Material-Adaptive Anomaly Detection Using Property-Concatenated Transfer Learning in Wire Arc Additive Manufacturing

      한글로보기

      https://www.riss.kr/link?id=A108944656

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Wire arc additive manufacturing is a promising additive manufacturing process because of its high deposition rate, and material diversity. However, the low quality of melted parts is a critical issue, owing to the difficulty in establishing design rul...

      Wire arc additive manufacturing is a promising additive manufacturing process because of its high deposition rate, and material diversity. However, the low quality of melted parts is a critical issue, owing to the difficulty in establishing design rules for process–structure–property–performance. Previous studies have resolved this challenge by deriving anomaly detection models for quality monitoring and have largely relied on machine learning by training melt pool image data. Acquiring sufficient data is a key to obtaining reliable models in machine learning; however, an issue arises from concerning the cost intensiveness in high-cost materials. We propose a material-adaptive anomaly detection method to detect balling defects in a target material using property-concatenated transfer learning. First, transfer learing is applied to derive convolutional neural network (CNN)-based models from a source material and transfer them to a target material, wherein data are insufficient and machine learning rarely achieves high performance. Second, material properties are concatenated on transfer learning as additional features onto image features, contrary to typical transfer learning where CNNs only extract image features. We perform experiments in a gas tungsten arc welding system with low-carbon steel (LCS), stainless steel (STS), and inconel (INC) materials. Our models achieve best classification accuracies of 82.95%, 89.47%, and 84.22% when transferring from LCS to STS, LCS to INC, and STS to INC, respectively, compared with 78.03%, 86.37%, and 73.63% obtained using typical transfer learning. The proposed method can effectively resolve the data scarcity by model transfer from sufficient datasets in low-cost materials to rare datasets in high-cost materials. Moreover, it outperforms typical transfer learning because material properties are learned as manufacturing-knowledge features, accounting for melting and hardening characteristics of materials.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼