RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Ammonium glycyrrhizinate protects gastric epithelial cells from hydrogen peroxide-induced cell death.

      한글로보기

      https://www.riss.kr/link?id=A107602339

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>Glycyrrhiza uralensis has a potential for preventing or ameliorating gastric mucosal ulceration. To understand the molecular mechanism about the medicinal effect of G. uralensis, we isolated four single compounds from G. uralensis and one related compound and screened for the cellular protective effect against H(2)O(2)-induced damage in gastric epithelial AGS cells. Interestingly, we found that ammonium glycyrrhizinate (AG) prepared from glycyrrhizin dramatically protects AGS cells from H(2)O(2)-induced damage as measured by the integrity of actin cytoskeleton. AG also inhibited FeSO(4)-induced reactive oxygen radicals in a dose-dependent manner, suggesting the role for AG as a free radical scavenger. To better understand the protective role of AG at the transcriptional level, we performed genome-wide expression profiling using high-density oligonucleotide microarrays, followed by validation using RT-PCR. Among the 33,096 genes that were screened in the microarray, 936 genes were found to be differentially expressed in a statistically significant manner in the presence or absence of H(2)O(2) and AG. Among the 936 genes, 51 genes were differentially expressed at least 3-fold in response to the H(2)O(2) treatment. AG blocked the expression of genes related to apoptotic cell death (GDF15, ATF3, TNFRSF10A, NALP1) or oxidative stress path-ways (HMOX1) which was elevated in response to H(2)O(2) treatment, suggesting a potential protective role for AG in oxidative stress-induced cell death. Collectively, current results demonstrate that AG is a novel antioxidant that could be effective for the treatment of gastric diseases related to the oxidative stress-induced mucosal damage.</P>
      번역하기

      <P>Glycyrrhiza uralensis has a potential for preventing or ameliorating gastric mucosal ulceration. To understand the molecular mechanism about the medicinal effect of G. uralensis, we isolated four single compounds from G. uralensis and one rel...

      <P>Glycyrrhiza uralensis has a potential for preventing or ameliorating gastric mucosal ulceration. To understand the molecular mechanism about the medicinal effect of G. uralensis, we isolated four single compounds from G. uralensis and one related compound and screened for the cellular protective effect against H(2)O(2)-induced damage in gastric epithelial AGS cells. Interestingly, we found that ammonium glycyrrhizinate (AG) prepared from glycyrrhizin dramatically protects AGS cells from H(2)O(2)-induced damage as measured by the integrity of actin cytoskeleton. AG also inhibited FeSO(4)-induced reactive oxygen radicals in a dose-dependent manner, suggesting the role for AG as a free radical scavenger. To better understand the protective role of AG at the transcriptional level, we performed genome-wide expression profiling using high-density oligonucleotide microarrays, followed by validation using RT-PCR. Among the 33,096 genes that were screened in the microarray, 936 genes were found to be differentially expressed in a statistically significant manner in the presence or absence of H(2)O(2) and AG. Among the 936 genes, 51 genes were differentially expressed at least 3-fold in response to the H(2)O(2) treatment. AG blocked the expression of genes related to apoptotic cell death (GDF15, ATF3, TNFRSF10A, NALP1) or oxidative stress path-ways (HMOX1) which was elevated in response to H(2)O(2) treatment, suggesting a potential protective role for AG in oxidative stress-induced cell death. Collectively, current results demonstrate that AG is a novel antioxidant that could be effective for the treatment of gastric diseases related to the oxidative stress-induced mucosal damage.</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼