RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      안드로이드 기반의 스마트폰을 활용한 백반증 피부 영상 분할

      한글로보기

      https://www.riss.kr/link?id=A99862940

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this study, the new color image processing algorithms with an android-based mobile device are developed to detect the abnormal color densities in a skin image and interpret them as the vitiligo lesions. Our proposed method is firstly based on transforming RGB data into HSI domain and segmenting the imag into the vitiligo-skin candidates by applying Otsu"s threshold algorithm. The structure elements for morphological image processing are suggested to delete the spurious regions in vitiligo regions and the image blob labeling algorithm is applied to compare RGB color densities of the abnormal skin region with them of a region of interest. Our suggested color image processing algorithms are implemented with an android-platform smartphone and thus a mobile device can be utilized to diagnose or monitor the patient"s skin conditions under the environments of pervasive healthcare services.
      번역하기

      In this study, the new color image processing algorithms with an android-based mobile device are developed to detect the abnormal color densities in a skin image and interpret them as the vitiligo lesions. Our proposed method is firstly based on trans...

      In this study, the new color image processing algorithms with an android-based mobile device are developed to detect the abnormal color densities in a skin image and interpret them as the vitiligo lesions. Our proposed method is firstly based on transforming RGB data into HSI domain and segmenting the imag into the vitiligo-skin candidates by applying Otsu"s threshold algorithm. The structure elements for morphological image processing are suggested to delete the spurious regions in vitiligo regions and the image blob labeling algorithm is applied to compare RGB color densities of the abnormal skin region with them of a region of interest. Our suggested color image processing algorithms are implemented with an android-platform smartphone and thus a mobile device can be utilized to diagnose or monitor the patient"s skin conditions under the environments of pervasive healthcare services.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. 서론
      • 2. 본론
      • 3. 결론
      • References
      • Abstract
      • 1. 서론
      • 2. 본론
      • 3. 결론
      • References
      더보기

      참고문헌 (Reference)

      1 A. Marshall, "Use of a Smartphone for Improved Self-Management of Pulmonary Rehabilitation" 2008 :

      2 Yonny S. Izmantoko, "Time Complexity Measurement on CUDA-based GPU Parallel Architecture of Morphology Operation" 한국멀티미디어학회 16 (16): 444-452, 2013

      3 G. Fabbrocini, "Teledermatology: From Prevention to Diagnosis of Nonmelanoma and Melanoma Skin Cancer" 2011 :

      4 L. J. Haddock, "Simple, Intensive Technique for High-Quality Smartphone Funds Photography in Human and Animal Eyes" 2013 :

      5 N. Otsu, "A Threshold Selection Method from Gray-Level Histograms" SMC-9 : 62-66, 1979

      6 V. Vezhnevets, "A Survey on Pixel-Based Skin Color Detection Techniques" 85-92, 2003

      1 A. Marshall, "Use of a Smartphone for Improved Self-Management of Pulmonary Rehabilitation" 2008 :

      2 Yonny S. Izmantoko, "Time Complexity Measurement on CUDA-based GPU Parallel Architecture of Morphology Operation" 한국멀티미디어학회 16 (16): 444-452, 2013

      3 G. Fabbrocini, "Teledermatology: From Prevention to Diagnosis of Nonmelanoma and Melanoma Skin Cancer" 2011 :

      4 L. J. Haddock, "Simple, Intensive Technique for High-Quality Smartphone Funds Photography in Human and Animal Eyes" 2013 :

      5 N. Otsu, "A Threshold Selection Method from Gray-Level Histograms" SMC-9 : 62-66, 1979

      6 V. Vezhnevets, "A Survey on Pixel-Based Skin Color Detection Techniques" 85-92, 2003

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 학술지 통합 (기타) KCI등재
      2001-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.27 0.27 0.24
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.21 0.19 0.366 0.08
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼